{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Working in more than one dimension\n", "Although in general the case of having a fit to 1D data is the most frequent, sometimes it is needed to perform fits in many dimensions. This is completely supported by MinKit, for both the unbinned and binned cases, although with some limitations. These limitations are imposed by the multidimensional nature of the problem, since calculating numerical integrals might lead to enormous arrays for the grids to use. As always, we start with a few imports, and we will define a function to help us to plot the results." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "import minkit\n", "import numpy as np\n", "\n", "def create_figure():\n", "\n", " fig = plt.figure(figsize=(10, 10))\n", "\n", " left, width = 0.12, 0.55\n", " bottom, height = 0.12, 0.55\n", " bottom_h = left_h = left + width + 0.02\n", "\n", " ax0 = plt.axes([left, bottom, width, height])\n", " ax1 = plt.axes([left, bottom_h, width, 0.25], sharex=ax0)\n", " ax2 = plt.axes([left_h, bottom, 0.25, height], sharey=ax0)\n", "\n", " plt.setp(ax1.get_xticklabels(), visible=False)\n", " plt.setp(ax2.get_yticklabels(), visible=False)\n", " \n", " return fig, ax0, ax1, ax2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Unbinned case\n", "Let's create an unbinned data set in two dimensions from two different Gaussian distributions with shared mean and different standard deviation, do a fit to it, and plot the results." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FCN = 694289.713121555TOTAL NCALL = 81NCALLS = 81
EDM = 9.269661053992134e-05GOAL EDM = 1e-05\n", " UP = 1.0
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ValidValid ParamAccurate CovarPosDefMade PosDef
TrueTrueTrueTrueFalse
Hesse FailHasCovAbove EDMReach calllim
FalseTrueFalseFalse
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
+NameValueHesse ErrorMinos Error-Minos Error+Limit-Limit+Fixed?
0c0.001875180.00285409-55No
1sx1.994670.0054454913No
2sy0.9990870.002234230.53No
\n", "
\n",
       "\n",
       "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAJtCAYAAABDpcZWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5hU5fn/8fcz24ClLbKClJ3F3kuCYvvFioqIDTWWqKCGGHuiXzEajaixJaImMRrsGksMoqgQVOxGo4BRiWJnl977wsKW5/fHGWDOM7CH2TJnds7ndV17sdPvqXtz5nPux1hrEREREZHcFgu7ABERERFpeWr6RERERCJATZ+IiIhIBKjpExEREYkANX0iIiIiEZAfdgEN6dq1qy0vLw+7DBERyXJTpkxZZK0tDbsOkWyW1U1feXk5kydPDrsMERHJcsaYyrBrEMl2+npXREREJALU9ImIiIhEgJo+ERERkQhQ0yciIiISAWr6RERERCJATZ+IiIhIBKjpExEREYkANX0iWai8vBxjDMYYNKBcRESaQ1YPZxaJqsrKSqy1ABhjQq5GRERygbb0iYiIiESAmj4RERGRCFDTJyIiIhIBavpEREREIkBNn4iIiEgEqOkTyTHJ41408kVERNZT0yfSyrlNHoC1dsMPoCZQRESC5/QZY3oDTwDdAAuMstbea4zpAvwDKAcqgNOstUuN91fnXuBYYDUwxFr7SeK6zgV+m7jqW6y1jzfv3RFpncrLy6msrNxwuEePQ3jpJfjhB4B7OOssWLYMVq4EYyAWg6Ii6NoVKiuv4A9/uIIdd4SddoLtt/dfd0VFhe+w5v6JiESTWb8lYLNnMGYbYBtr7SfGmA7AFOBEYAiwxFp7uzHmGqDEWjvcGHMscCle09cPuNda2y/RJE4G+uI1j1OAH1trl27utvv27WsnT57c5Dspks3q6iA/f39uuOE/fPghTJrkNXgbrWTbbTtQUgIdOnhNX309rFkDixbBDz+sADpuOHeHDtCvHxx0EBx2mPdvftJ/74wxBL3vRVobY8wUa23fsOsQyWaBTV/KBYwZC/wl8XOotXZuojF821q7kzHmb4nfn0mc/2vg0PU/1tpfJI73nW9T1PRJrqqrg4kT4emnYfx4r3mLxWDPPWHffWG//WCPPWC77aC0tOEmzRjDkiWWb76BadO8pvGDD+Dzz73msEsXGDgQTj7Z+7ewUE2f5B41fSLB0lqGzRhTDuwDfAR0s9bOTZw0D+/rX4CewMyki81KHLe5493bGAYMAygrK0unPJGstfHr222BX5CXdy51dd3o3NlrxJ566gwWLnyGLl3SuS5PPB6npMTbutevHwwZ4h2/YgW8/jqMHQuvvAJPPglbbw1wJ199BTvv3Pz3U0REstcW78hhjGkPPA9cYa1dkXya9TYbNMumA2vtKGttX2tt39LS0ua4SpFQWQuVlT05+WSLMd+Tn381dXX/YfRomDcP/v53gGe3qOGDjevyrv9xM3vrdewIgwfDE0/AggXw8stw4IEAV7DLLnDccfDuu159IiKS+7ao6TPGFOA1fE9Za8ckjp6f+Fp3fe5vQeL42UDvpIv3Shy3ueNFctb778OhhwL8m7fegt/8BryNdCcyeLC3M0aQeDzu2/s2Ho+nXUd+vtfkvfACQC9GjICPPoJDDvEawYkT075KERFpZQKbvsTeuA8D06y1I5NOegk4N/H7ucDYpOPPMZ79geWJr4FfBY4yxpQYY0qAoxLHieSczz7zvrb9f/8PvvkG4DJmzoTf/x569EjvuioqKrZoy96WW8ANN3jN5333wZw50L8/HHUUfPJJE69aRESy1pZs6TsIOBs43BjzaeLnWOB2oL8x5lvgyMRhgPHAD8B3wIPARQDW2iXAzcCkxM9NieNEcsayZXDppfCjH8GHH8Idd8D33wP8meLisKvza9cOLroIvv4aRo6EKVPgxz+G887zdiwREZHckvbeu5mkvXeltbAWHnsMhg+HxYvhl7+Em2+GkhLvdHdMyqZ2xmj6Frwts7mRLcuXe1si777bywPecYfXAMY0wl1aAe29KxJMH+cijeBfBaOMdu3e47zzYIcdvC1mf/nLxoZvU5r/K9st52YE16/Q0akT3Hkn/Pe/sNtu8POfw09+Aj17HqIVPUREcoCaPpFGqKyspL7e8vDDlo4dZ1BdvQ/33w/vvQd77526NFpjdr5oKW7DmbzFEWD33eGdd+DRR+GLL2DOnPHcf7+lvn7T5xcRkdZBTZ9Io3ThhBPg/PNhn30A9uTCCzd+FbqlY1WylTHevL+pUwH+zS9/CcceC3PnBlxQRESylpo+kS3g33K3P3l5nzNhgpd/e/NNgOlhl9gievUCOIa//MXb+uc1uIeGWpOIiDSOmj6RLbD+69yRIy35+f+hrKwnH3wAV1wRhR0dLBdf7C3v5uUUJ3Lrrd4SbyIi0nrk/J8rkeZRzCmnwK9/7Q05/uQT6Ju0n2BzDFAOy+Z27HDttpvX+ME/uO46GDTIG1EjIiKtg5o+kQAzZgC8z4svwh//CGPGQOfO/vOEuTduU7m1A5ttYNu3h7Kya4FfMn78OkpKptGz5yEhVS4iIulQ0yeyCRszfAcQj8/HmG0ZPx6uvNLbySGXBTWwlZUVWHs/b79dyFZb7cK8eS9izKEa6SIikuXU9IlsQmVlJU8+aSks/JDtt+/Gl1925Oijw64quxxyiLd+7047lZCf/zajRmmki4hINlPTJ0LqXL3OnX/P2WfDQQd5jc3OO4ddYXbabjtvubkjj4Rhw+CGG6CsbMsygiIikllq+kTYOFevrs7yq19Zli27ltNPhwkToEuXsKvLbp06wcsvezMLb74Zjj66gpqazQ9/FhGRcOSHXYBItli3DoYOhaefhssu82bw5f44luaRnw8PPgjdu3vr9y5YAM88A23bhl2ZiIisp6ZPBIB2DBoEr70Gt90Gw4fn/g4bzc0YuOUW6NYNLr8cjjoKxo0LuyoREVlPTZ9EUnl5edLXju0pKnqTiRPh4YfhvPNCLa3Vu/RS2Hpr+NnPoH9/gM5BFxERkQzQl1cSSeszfMuXWw48cCW1tf146ik1fM3lpz+F55+H//4X4A0WLw67IhERUdMnkbVsmbcl6uOP4R//gNNPD7ui3HL88TB2LMCuHHaYl/MTEZHwqOmTiCrhyCO9LVGjR8PgwWHXk5sGDICttz6fqVNX063blxjTXSNcRERCoqZPImfpUoCJ/O9/8OKLcMIJYVeU2+bPf4q3325HcfGu7LbbPCorV4VdkohIJKnpk0hZudLb+gS78eKLcOyxYVcUDYcc4s3y+/57gNcSjbeIiGSSmj6JjNWrYdAgmDwZ4Kccc0zYFUXLYYfBCy8A7M6AAV4DLiIimaOmTyJh7Vovt/fuu/DEEwBjwy4pkrxG+zQmT4bjjvMacRERyQw1fZLzamuhS5d/MWECWHsBZ51liMfjYZcVYWN56il4/30vT7l2bdj1iIhEg5o+yWn19d7SaqtXD+Cee8Dah7DWUlFREXZpkfbTn3qDsCdO9IY419WFXZGISO5T0yc57aqr4O9/B7iOyy8PuxoBiMfjGGMYOtQAv2b0aG8VD2vDrkxEJLep6ZOcddddcPfdcNllALeGXY4kVFRUYK1N/IwE7uD+++Gmm8KuTEQkt6npk5z01FPeVr7TTvMaP8lm1zBkCNx4IzzwQNi1iIjkrvywCxBpbq+9BkOGwKGHenvqxvRfm6z34IOwaBFcdBF07QqnnBJ2RSIiuUd/DiWnTJnijWbZdVdvtY2iorArki2Rn++tf3zggXDWWfDOO2FXJCKSe9T0Sc74/ntvhY0uXeBf/4JOncKuSNLRrp23asd228GJJ8K0aWFXJCKSW9T0SU7o3Xsftt/+WxYsWMyMGTtz4IHlYZckjVBSAuPHQ2EhDBwICxaEXZGISO4IbPqMMY8YYxYYY/6XdNyNxpjZxphPEz/HJp32G2PMd8aYr40xRycdf0ziuO+MMdc0/12RKCkvL8cYk/gpYuHCv1FUtAP//vdWWPsVQNLpGsaczdaPcFn/06ePYcGC/Zg+fTXduv2HsrKdwy5RRCQnbMmWvseATa1Sere1du/Ez3gAY8yuwOnAbonL/NUYk2eMyQPuAwYAuwJnJM4r0iiVlZVYa6mvt/zsZ2tZu3Y/Hn/cy4SBOxZEw5izmftceT8f88IL7TBmf2bOvFXDm0VEmkFg02etfRdYsoXXdwLwrLV2rbV2OvAdsF/i5ztr7Q/W2nXAs4nzijTJLbd4w5dvvtlb5UFyx4knwsiRACdz9dVhVyMi0vo1JdN3iTHm88TXvyWJ43oCM5POMytx3OaOF2m0Z56BG26Ac86B664LuxppCZdfDh06PMrIkWDMJRhjKC8vD7ssEZFWqbFN3/3AdsDewFzgruYqyBgzzBgz2RgzeeHChc11tZJzDmTIEPjJT2DUKDAm7HqkJRgDS5cOZdAgiMX+wrhxlsrKyrDLEhFplRrV9Flr51tr66y19cCDeF/fAswGeiedtVfiuM0dv6nrHmWt7Wut7VtaWtqY8iTH/fADwIvE4zBmjGbx5bq8PG+r7l57wemngxcLFhGRdDWq6TPGbJN08CRg/Z69LwGnG2OKjDF9gB2Aj4FJwA7GmD7GmEK8nT1eanzZElVLl3qjPCDGuHGw1VZhVySZUFwMY8d6s/zgZRYtCrsiEZHWZ0tGtjwDfAjsZIyZZYw5H7jTGDPVGPM5cBjwKwBr7RfAc8CXwATg4sQWwVrgEuBVYBrwXOK8IluspgZOPdUbwgwns8MOYVckmdS7t9f4QQ8GD4Z168KuSESkdTHW2rBr2Ky+ffvayZMnh12GZIlLLoH77oPHHoMhQwzZ/NqVlmPMmcDTXHCB8pyykTFmirW2b9h1iGQzrcghrcKoUV7Dd9VVcO65YVcjYYrHPwB+z0MPQSx2hfbmFRHZQmr6JOu9+y784hc1wL/44x/ztMJGxFVUVFBXdx0nngix2D2sWXOob0UPNYEiIpumpk+yWmUlDB4M8D1Llw7A2jqtsCHEYvDkk7DHHlBd/RhffrlxNQ+NdBER2TQ1fZKVvLV1iykv/5RFi5bRo8dFdO4cdlWSTdq3h5degjZtYNAgWLw47IpERLKbmj7JSpWVlZxyShWx2N6MH9+Z2bPfDLskyUJlZfDiizBzprdnd01N2BWJiGQvNX2SpX7L6NFwxx0wYEDYtUg2O+AAePBBeOstb0cfERHZtPywCxBxvfACwM2cfTZceWXY1UhrcM458OmncPfdAENCrkZEJDtpS59klalT4eyzAT7SDDZJy513wpFHAjzAf/4TdjUiItlHTZ9kjUWL4IQToGNHgJNo0ybsiqQ1yc+HZ58FmM3JJ8OcOWFXJCKSXdT0SVZYv8TanDleMB/mhl2StELeWswnsGIFnHwyVFeHXZGISPZQ0ydZYautHuftt2Ht2rPp10/Dl6Xx4vGVVFUN5qOPoG3bR4jHy8MuSUQkK6jpk9CNGgUrV57LVVeBtU9q+LI0SUVFBdY+z/XXA5zHjBmDwi5JRCQrqOmTUL33Hlx8McC/uP32sKuRXHLjjXD88QB389ZbIRcjIpIF1PRJaGbOhFNOgT59AM4gLy/siiSXrF+qDb7h1FNh+vSwKxIRCZeaPgnF6tVw4ole0P6llwCWh12S5CBvT/ATqKvzXm9VVWFXJCISHjV9knHWQmnpi3zyST0rVhzHLrtoxw1pSd/xzDPwv//B0KHe609EJIrU9EnG3XUXrF59IrfcEsPaV7TjhrS4Y46B22+Hf/4Tbrst7GpERMKhpk8y6tVXYfhwgOe49tqwq5EoiMfjGGO4+moDPM1119UzblzYVYmIZJ6aPsmY776D00+H3XcHGKol1iQjvBEuFmstVVVnUlj4JccdtxxjdsYYQ3l5edgliohkhJo+yYgVK7zxGXl561fcWB12SRJB7drBt9/uTmlpJ3bc8SuWLrVUVlaGXZaISEao6ZMWV18PZ58N33wDzz23fkSLSDjKyuD55+GHH+Css6CsrA/GmA0/2vInIrlKTZ+0uBEjvLEsI0fC4YeHXY0I/L//B3/+M4wfD2ec8cOGr3+t1ZY/Ecld+WEXILltzBi46SYYMgQuvTTsakQ2uvBC+OwzuOMO2GMPb6ufiEgu05Y+aTFTp8I550C/fvDmmzsRi238Ck1z+SQb3HsvHHIIXHABTJoUdjUiIi1LTZ+0iMWL4YQTvBURxoyBGTO+8X2Fprl8kg0KC73Zfd26eSt2zJ0bdkUiIi1HTZ80u9pa6NXrfaZPX8vcufvTs6e27En2Ki31MqfLl8NJJwEUhV2SiEiLUNMnze7qq6G6+mAeeaQIa/+jLXuS9fbcE554Aj76COABLdUmIjlJTZ80qyeegLvvBvgTQ4eGXY3Iljv5ZLjxRoAh3HNPyMWIiLQANX3SbD7+GIYNg8MOA7gy7HJE0nb99QCjueoqb8lAEZFcoqZPmkWvXvvTr99c1q6dzltvdSUe7xl2SSJpi8UAhrD77t6Sgd98E3ZFIiLNR02fNFlVFcyefR/t22/D1Kl9sHaRMnzSilUxdizk53tLBy5fHnY9IiLNI7DpM8Y8YoxZYIz5X9JxXYwxrxtjvk38W5I43hhj/mSM+c4Y87kx5kdJlzk3cf5vjTHntszdkUyrr/cGL8M+PPMM7L57yAWJNIPychg9Gr7/Hs48E+rqwq5IRKTptmRL32PAMc5x1wBvWGt3AN5IHAYYAOyQ+BkG3A9ekwj8DugH7Af8bn2jKK3biBHeH0e4muOOC7sakaaLx+MYYzj0UENt7YWMHw/XXht2VSIiTRfY9Flr3wWWOEefADye+P1x4MSk45+wnv8AnY0x2wBHA69ba5dYa5cCr5PaSEorUl5ejjE/5aabAB6hrGx02CWJNIuKioqkQeIPAH/lzjvh738PuzIRkaZpbKavm7V2/ez6eUC3xO89gZlJ55uVOG5zx0srVVlZSps2/+Dgg6G6+jwqKyvCLkmkhVy+Yam2Dz8MuxYRkcZr8o4c1loLNNsoU2PMMGPMZGPM5IULFzbX1Uozmj0bYCzdusHzz0ORFjCQnFbL6NHQq5e3tOD06WHXIyLSOI1t+uYnvrYl8e+CxPGzgd5J5+uVOG5zx6ew1o6y1va11vYtLS1tZHnSUlav9v7wQQdefhm23jrsikRaXteuMG4c1NTAccdpj14RaZ0a2/S9BKzfA/dcYGzS8eck9uLdH1ie+Br4VeAoY0xJYgeOoxLHSStiLQwdCp98AnAme+wRdkUimbPTTt6W7W++gdNO89aYFhFpTbZkZMszwIfATsaYWcaY84Hbgf7GmG+BIxOHAcYDPwDfAQ8CFwFYa5cANwOTEj83JY6TVqK8vJxY7Gaeew6svZp4fGrYJYlkxPq9eY0xHHGEobb2fF57DQoK/ko8Xh52eSIiW8zYLF5ZvG/fvnby5MlhlyGAMUOBRzn/fHjwQTAm7IpEwjN8ONx5J8DlWHtv2OUIYIyZYq3tG3YdItlMK3JIoDfeABhF//5w//1q+ERuuw1OOgngbl55JexqRES2jJo+adCXX8LgwQBf8c9/QkFB2BWJhC8WgyefBPiE00+Hzz4LuyIRkWBq+mSz5s2DY4+Ftm0BBtKpU9gViWSP4mKA4ykp8fbonTMn7IpERBqmpk82qaoKBg2ChQtJfH01M+giIhE0l5dfhqVLYeBAWLEi7HpERDZPTZ9s4C2tZjAmj9LS15gyBZ55Bn7847ArE8lO8XicffYxVFUdw6ef1tKt27usWxd2VSIim6amTzaorKzEWssVV9SxZs1R3HMPHH982FWJZK+N6/RO4NFH86mu/gkXXODNtBQRyTZq+sTnrrvgnnsA7uWyy8KuRqT1GDIEOnW6iyefhFjsVowxlJeXh12WiMgGavokyVlcdRWceirAr8MuRqTVWbr0SoYNA7iWv/7VUllZGXZJIiIb5IddgGSHV18FeJTDDvNGUXz8cW9M0kC+eDweWm0irYUxcN99MHcuXHIJwAlhlyQisoG29AmTJq2fxfcFL7wARUXJWSXvp6KiIuQqRVqH/HxvB6i+fQGe4YMPwq5IRMSjpi/ivv3Wm8VXWgowQLP4RJpBcfH6UUezGDQIpk0LuyIRETV9kTZvHhx9tPe79/XuvDDLEckp3n+kjqGgAPr3B20sF5GwqemLqGXLoKzsS6ZPr2LRov3YaSej3J5IM4vH65g/f09mz15Knz7f0rv3vmGXJCIRpqYvglat8r7SranZngkTirH2Y+X2RFqAl439nA8+KKFdux2YNeshli4NuyoRiSo1fRFTXQ0nnAAffQRw+oavd0Wk5RxwALz4IsAuDBzoLXMoIpJpavoipKYGTjsN3nwTHn0U4IWwSxKJjP79Ac7go4/gpJNg7dqwKxKRqFHTFxF1ddC580u8/DLARZx7rjJ8IpkWj0+hvn4or78ObdqMJh7fLuySRCRC1PRFgLVw4YWwevXx3H47WPtXZfhEQuBl/B5l5EiAU5gx4ybq6sKuSkSiQk1fjrMWLr8cHnoI4BaGDw+7IhH51a/g1lsBzmLoUNT4iUhGqOnLYesbvj//2fsjA9eHXZKIJPzmNwC/5ckn4YILoL4+7IpEJNep6ctRbsN3111hVyQiqX7P734Hjz0Gw4ap8RORlqWmLwclN3wwkrvvNsRi2nFDJNvE43FGjDDAzTz8MOTl/Q1jYhhjMMZQXl4edokikkPU9OUYt+Grr/811lrtuCGShbwdOyz19ddzzTUAv+DCC+upq/Pes5WVlWGXKCI5RE1fDknN8F2JMWFXJSJBjPF27Bg+HB54AIYOhdrasKsSkVyTH3YB0jzq6uAXv4CHH96Y4bv77rCrEpEtZQzcdhsUF8MNN8CaNQAFYZclIjlETV8OWLcOzj4bnnsOrr8eRoxAW/hEWiFjvPdwcTFceSXAGKqroU2bsCsTkVygr3dbuTVrvCWdnnsO/vAHuOkmNXwird2vf+19zQvHMnAgrFoVdkUikgvU9LViZWW7067d24wfXw8M4//+z2zY688Y7a0r0pr94hcA5/L223D00bBsWcgFiUirp6avlVq0CGbOfIS8vEN5+ukY1o7asJeu9tYVyQ3x+HvU1w/mgw/WUVIyFWN6+f5jp5EuIpIONX2t0Pffw4EHAuzBmDFwxhlhVyQiLcEb6fI8EycW0qHDHvTuPYsvvtj4HzuNdBGRdKjpa2UmTYIDDoDFiwGO4Pjjw65IRFraEUfAu+9CTQ0cfDD8+99hVyQirVGTmj5jTIUxZqox5lNjzOTEcV2MMa8bY75N/FuSON4YY/5kjPnOGPO5MeZHzXEHomTcODj0UG/Pvg8+APgw5IpEJFP23tt735eWwpFHwosvhl2RiLQ2zbGl7zBr7d7W2r6Jw9cAb1hrdwDeSBwGGADskPgZBtzfDLcdGQ89BMcdV8vq1ZOpqOjOzjtrRw2RqOnTx9vKt9deMHgwwCVYG3ZVItJatMTXuycAjyd+fxw4Men4J6znP0BnY8w2LXD7OaWuDq65Bn7+c4DXWbmyL9bO044aIhHVtSu8+SYMGgTwZy6+2PvaV0QkSFObPgu8ZoyZYowZljium7V2buL3eUC3xO89gZlJl52VOM7HGDPMGDPZGDN54cKFTSyvdVuxAk48Ee64Ay68EOB42rcPuyoRCVu7djBmDMDt3H8/DBgAS5eGXZWIZLumNn0HW2t/hPfV7cXGmJ8kn2ittXiN4Raz1o6y1va11vYtLS1tYnmt1w8/QNeuX/PKK7XARTzwgCEeT+mRRSSiYjGIxx8AhvDGG+vo0uVrevY8NOyyRCSLNanps9bOTvy7AHgB2A+Yv/5r28S/CxJnnw30Trp4r8Rx4nj7bdhvP6ipKWXixHys/au+zhWRFN5Il8d4771CunbdiTlzxjBxYthViUi2anTTZ4wpNsZ0WP87cBTwP+Al4NzE2c4FxiZ+fwk4J7EX7/7A8qSvgQWwFv7yF+jf39tDD/bjiCPCrkpEst3BB8PHH0NBwUL696/DmGsxJqbhzSLi05Qtfd2A940xnwEfA+OstROA24H+xphvgSMThwHGAz8A3wEPAhc14bZzzqpV0L79S1x6KdTWvsxXX3UiHq8NuywRaSX69IElS3bijDPygFs5/vh66us7agUPEdnA2Cze379v37528uTJYZfR4qZN88YvTJtWx6235jF8uJfXERFJl7Xw5z/DlVdCPA7PP++NeAEwxpDNn/lNYYyZkjQ6TEQ2Qa1FyJ59Fvbdd/0KG/35zW/U8IlI4xkDl13mZYPXrPFW8Hn0UTTPT0TU9IWlqsqbvXfGGd6k/U8+AXgr7LJEJEccdJD3ubL//nDeeXDmmQAdwy5LREKkpi8EkyfDj34EDz8Mv/kNvPUW9NQ0FhFpZt26weuvwy23wD//CfApH2r1RpHIUtOXQfX13qDlAw6A1au9qfq33goFBWFXJiK5Ki8PrrsO3nsP8vLyOfDAWoy5HmPytGOHSMSo6cuQ6dOhXbsPuOYaqK39J7NmdeGww4xvzzqtpSsiLeWAA2Dx4t6ceWY+cDMHHFBHZWVR2GWJSAap6Wth9fXe7L099oC1a3fn4Yehvv5UrF2Ctdb3o+HLItKSOnWCp57yfr7+GuBT/vhHb41vEcl9avpa0HffwWGHwaWXesNTYXfOO8/bu05EJCxnnglffAHwKv/3f97n01dfhV2ViLQ0NX0toKYG7roL9twTPvsMHnkE/vUvgJlhlyYiAkD37gAn8dRT8M033hSBm2+GtWvDrkxEWoqavmb2/vvw4x/DVVcBvM7y5T057zxDLKbMnohkn/Vb/Y4/Hm64Adq0+RpjDtcKHiI5KD/sAnLFggWw7bb/pKrqVKASuIzS0s+orJwddmkiIpsUj8cxSXmTrbc+hw4dHuf779/kzDPh6ae7h1idiDQ3belropoab8mjnXaCqqoTuOYaWLUqjrVjqaysCLs8EZHNqqio8O1MNn/+40yd6m3xGz0a4GvuvBOqq8OuVESag5q+RrIWXnwRdtvNW/Loxz8G2IvbboPi4rCrExFpnLZtYcQImD1sp4wAACAASURBVDoV4B2GD4dddoHnntNSbiKtnZq+Rpg8GQ49FE46Cb799ktgIG+8YYjH14RdmohIs9hxR4ATmDgROnaEn/7UW9rtgw/CrkxEGktNXxqmToXBg2HffWHaNIALqanZFWvHac6eiOSkI47w1vB96CH46KOFHHQQGDMeY/pqRw+RVkZN3xb44gs47TRvBMuYMcuBESxc2JF4fAL52hVGRHJcXh6cfz7U1/fhttugS5djgcksWDAKY/bcsKqQmkCR7KamrwFTp8IZZ3iraXhz9m5h8eJOWPs7rF2hLXsiktPW7927canIrlxzjbes5IgRUFBwFPA5gwdbJk2yVFZWhl2yiDRATZ/DWnjjDTjmGG/L3rPPrsLa21i1qivx+EN06RJ2hSIimeHu3bv+P7odO3p7+FZUwHXXwcSJXuwF3mDCBO3wIZKt1PQl1NTA0097e+EeeSR8+inAtSxe3B5rf4O1i7RlT0QkSUkJ3HILzJgBf/wjwI4MGAB77QVPPqnVPUSyTaSbvvLycozpjTEjKCycw1lnwX//Ow04n/nz2xCPP60teyIiATp2hCuvBNiWxx6D+no45xzo3ZsNXweLSPgi2fTV13sZvcrKe4nFZmLM7xg4sAevvAJ1dbtg7cNYW60teyIiaYjHezBkiOGLL2JAf1atmsAf/gDbbQcDB8Irr0BtbdhVikRXpPY9/fJL7yuHp56CmTMB9ueaa+DnPwftdCYi0jTuf5SNMcyYYXnwQXjwQRg0CLp3h7PO8rYE7rlnOHWKRJWxWZy47du3r508eXKTrmPePHj2Wa/Z++QTgFrgNeAxysr+S2Xlt81QqYiIuMrLy5P26M2ntPQ8Djrob4wb5+Wo99oLzj7bG4nVu3fTbssYM8Va27fJRYvksJxs+ior4YUXYMwYeP99b0+yH/0IPvnkCubNu4du3VqgWBERadDGJnAr4KcUFv6cdev2BqBfP2/4/eDBsO226V+3mj6RYDnR9FkLn38O48Z5jd6UKd7xBQXTqKl5FvgnMI14PK6cnohIlvCawEJgcOLH69n23ttb5vL++wcxb944wPs71dBnuJo+kWCtNtO3aBHssstlLFr0Y+AoYJvEKR8CY4AX6NGjNvEBMSKkKkVEZHNSM4B9+OMfp/P88/C73wG8TGkpHH00DBgAZ53VNYwyRXJGq9nSt2QJ/Pvf8O678Pbb3tY8a6FLFzjqKO9D4aijoEePcGsWEZHG8WcAS9lqqzM5+uh7ePVVWLwYoJ69947xk5/AIYfAT34CXRN9oLb0iQTL6qZv22372mOOmcx778H//rf+2LXAx8BrdO/+ObNmjSUvL7waRUSkZdXVef/RP+qokSxfvhdwANAucer/gHeAS9T0iQTI6qbPmL4W3gI+AN6lW7dvmT79Odq2DbsyEREJy7p1MGmS983PO+943wKtWqUtfSJBsrzpK7Y1NVXkt9rkoYiItLTaWigoUNMnEiTLV+RYrYZPREQapL8TIlsmy5s+EREREWkOGW/6jDHHGGO+NsZ8Z4y5JtO3LyIiIhJFGW36jDF5wH3AAGBX4AxjzK6ZrEFEREQkijK9pW8/4Dtr7Q/W2nXAs8AJGa5BREREJHIyHX/tCcxMOjwL6Jd8BmPMMGBY4uAqY8zXGaqtMboCi8IuopXSY9d4euyaRo9f42XzYxcPuwCRbJd1+zxZa0cBo8KuY0sYYyZrREDj6LFrPD12TaPHr/H02Im0bpn+enc20DvpcK/EcSIiIiLSgjLd9E0CdjDG9DHGFAKnAy9luAYRERGRyMno17vW2lpjzCXAq0Ae8Ii19otM1tDMWsXX0FlKj13j6bFrGj1+jafHTqQVy+pl2ERERESkeWhFDhEREZEIUNMnIiIiEgFq+kREREQiQE2fiIiISASo6RMRERGJADV9IiIiIhGgpk9EREQkAtT0iYiIiESAmj4RERGRCMjoMmzpKjRFtg3FYZchIiJZbiVLF1lrSxtz2fz8znbvvbdv7pJEQjFlypTNvheyuulrQzH9zBFhlyEiIlluoh1d2djL1tV1YvLkyc1ZjkhojDGbfS/o610RERGRCFDTJyIiIhIBavpEREREIkBNn4iIiEgEqOkTEZGIM2EXIJIRavpEREREIkBNn4iIiEgEqOkTERERiQA1fSIiIiIRoKZPREREJALU9ImIiIhEgJo+ERERkQhQ0yciIiISAWr6RERERCJATZ+IiIhIBKjpExEREYkANX0iIiIiEaCmT0RERCQC8sMuQESaxuTl+Q7burqQKhERkWymLX0iIiIiEaCmT0REIs6EXYBIRqjpExEREYkAZfpEWjll+EREZEtoS5+IiIhIBKjpExEREYkANX0iIiIiEaBMn0SOO9fOpYyciIjkIm3pExEREYkANX0iIiIiEaCmT0RERCQClOmTyMl0Zk9r40proNepSO7Tlj4RERGRCFDTJyIiEae1dyUa1PSJiIiIREAomT5jTB4wGZhtrT0ujBpEMiXbMoTKbsmm6HUgkvvC2tJ3OTAtpNsWERERiZyMN33GmF7AQOChTN+2iIiISFSFsaXvHuBqoH5TJxpjhhljJhtjJtewNrOViYhIJCT/rdGOHBIVGW36jDHHAQustVM2dx5r7ShrbV9rbd8CijJYnUhusHV1vp+g001enu+nubXkdUt6YoWFG36iLvlvTdi1iGRKprf0HQQcb4ypAJ4FDjfG/D3DNYiIiCTRlj6Jhow2fdba31hre1lry4HTgTettT/LZA0iIiIiUaQ5fSIiEnHa0ifRENrau9bat4G3w7p9ySzNhsteLf1cJF+/myWrX7euRW9b/PR4i0SbtvSJiEjEaUufRIOaPhEREZEIUNMnIiIRpy19Eg2hZfokWlpzhq+peUTlGTdSpkxEJDza0iciIhGnLX0SDWr6RERERCJATZ+IiESctvRJNCjT1wTKam2Uy49FU+9LLj0WWyKXXwuSq9T0STRoS5+IiEScmj6JBjV9IiIScfpTKNGgV7qIiESctvRJNEQ609fU7FFD549arinT9681Pb7NPefPFXR9sXbtfIfrV69O6/bTlc3Phas1vY6kJanpk2jQlj4REYk4/SmUaNArXUREIk5b+iQa1PSJiEjExSgvLw+7CJEWF+lMX5TyO7mWXXLrjxUWbvZ097xBj4V7Xe56sUEZu3Q1NbMXpLkzfLn2WhJP1J/XyspZYZcg0uK0pU9ERIQ2YRcg0uLU9ImIiNA+7AJEWpyaPhERibwePXYOuwSRFhfpTF9LyrY8TFA9zT1LLtP3P53bCzqvm+Frym1tiaDMYVOl+9yE/Vw2pLlry6b7FjZTVOQ7bFt4nmO2efnlt8MuQaTFaUufiIhE3ooVYVcg0vLU9ImISOStXBl2BSItT02fiIhE3nnnXRZ2CSItTpm+iHKzUUFZqaDTWzoblW6WK516mnrfgx5LNyMYtBZuxtfmDZhLmK6WzAQ29brCXgc5bMn1u7U2dZ5jNmdBt8SiRTVhlyDS4rSlT0REhK3CLkCkxanpExGRSPM2UpaGXYZIi1PTJyIikZafD7B12GWItLhIZ/paUwalpWtNyZ2lmfNq7vqa8/rSzdy1ZC2Qmp1q7jl6Qfc3pZ4m3v/mzgSmo6l5zKbeXrrrMof9GZN8+5p5uFF+Pqxdq6ZPcp+29ImISKQVFIC29EkUqOkTEZFI877e7RZ2GSItTk2fiIhEmpdQ2Jo1a8KuRKRlRTrT15IZlExnjdIVVE/YGb6g0911Qqmt3fxlnfM2NVMXJCjn1dQ5gOmu1ZtuRjBd6Vx/c9/3TL9v0n1uXWG/77PltrPN+o+IGTNgp53CrUWkJWlLn4iIRNr6fZEqKkItQ6TFqekTEZFIU9MnURHpr3fT1ZxfzTR1aazm/lqpqUuLBQn6ejbdJaBsGud3z5vuY9fcI0iaeymwoBEqzf31dlPqd2tLV7pfZac8Ns4SeHbt2rRuL9Oxh3S5j2/YX4c3p5Z8bL2HbR1XX/0wv/jFL5vtekWyjbb0iYhI5O2ySyErVmwTdhkiLUpNn4iIRN7uuwPsHnYZIi1KTZ+IiESe1/RtS1VV2JWItJxWlekLewxKOstPNfeSRk0e6+GOOAnIMqWbBUr39tPNUgVpyec+3VqCcmuBeU4nd5bCGU8TWJ9z/vzSrv6TFy7y335AnjQoN9ZQHjQoExf02AXVEpTBc/OMQfelqeN30s0QBgm6/UwugZdpLZ1H9Jq+GNtvP4i5c19u0dsSCYu29ImISOTtuaf377x5yvVJ7lLTJyIikbfddtC1K8ABYZci0mLU9ImISOQZAwccAGr6JJe1qkxfS2c60s2FNZTnaerSV+kutRXIyXWlO5fPFZSdCry+Jt7/dHJxKbmngBl/6d73wOfazTOmO5MwKP/o5jUdKfd3+QrfwaBcW0o9AdnWxOr1G08v3vhcmGr/fXHvW1PfN0GvQ1e68zKD7nvQay0o85fuvMrAmY0NXH/YMwWDBGVLW8KBB8LLL+9M7957M3Pmpy1+eyKZpi19IiIiwMEHe//OmrVduIWItBA1fSIiIkC/ftCxI8DRYZci0iLU9ImIiAAFBXDkkQDHYG3Y1Yg0v1aV6QvS3LPx0j1/cgalOa8Lmj4vzM1Z0cR8TLr1BmWbAg+72aSVKxs8f3JWLCjnlPZj6R527lvKjEN3NlyHDv7T3efCyV+6gjJ8bk4u6LWQcv6AmY6BWTDncG0DOTJX0Fw793UV9NwGZVnTle5avE3N/KWbr0w5vYE8aJNnbzYxLxkkrJmDxxwDY8aU0bPnUcyZ81ooNYi0FG3pExERSRg0CGIxmDv34LBLEWl2avpEREQSuneHww4DOENf8UrOUdMnIiKS5IwzAHZgypSwKxFpXlmf6Utn9l2mpTNHKt18TFCeJSjLlJKFCsrUOTku4943J0OX7nwxN8cWdH0uU+DMfkvj9lMeazfn5a5l6z6W7nPh5qScjJxx85NuRs997jq09x2uX7rMf3qa67emM6sNIM99btLMIJoGq/G/1tKdKZjXvZv/DM5jkzLnL2DuX9BMwaDLB2VPWzpX3NQcnm9+ZZqvo3RPb81OPhkuuGAthx32D1auPCfsckSajbb0iYiIJCkpgXPOKWLVqpNw/n8q0qqp6RMREXFcfDFAB558MuxKRJqPmj4RERHHfvsBTOLee1MSGSKtVtZn+loyNxI0QysoH+Pm7pKvL2iemMs9PShnle7jku7ave5sOTeLFZjhc3NoAecPyhy6TBsng9jQc+delztHz31eA77PSck/Bs0rcw+7z93qNb6DsZLOvsN1ixY3fPvO6zi/tKv/8vPm+6/ffW6C8qFBz3Wnjv7zB6yv29Btp5y+wv9cuNflZv7cPKSbN0zJT65c1WA9KRlAR9C6yk3N4AUJyhi6z2Vd0mu7qWtMN3eeMRvXAu7a9WG++WZfune/jIUL/xR2OSJNpi19IiIimzB//gPsvjssWnShtvZJTlDTJyIisgmxGFx/PcCuPPNM2NWINJ2aPhERkc045RSASQwfDqtWBZ1bJLtlfaYvHelmQhrK5G3q8kF5n3QyKEF5mro05wSkzFYLyCKl1OPeF3eWnZOlCsqFpZzfySjGipzbc3JtKTkw97mtbnjGWPLjl9fZn5ELyibFupT4DtdXOTmtgNrcnFesR3f/+ddU+69/4aKG63OvLyCX5srrupXvcEpG0K3fyRSadQ3P1iPW8P8dffUHZNBcQTMD3ccuhTOHz32sgrKpQWteB33nFzTjMOV9kmbOOGVNbUc6nyNNXS883c/fpq4vnimxGHTvfhtz5oyhZ8+/sHz5JaHUIdIctKVPRESkAXPnjuFnP4MVK37ON9+EXY1I46npExERCXDnnQCrGTpUI1yk9VLTJyIiEmCbbQAu5YMP4N57w65GpHFaVaYvKOPR1BlXQRk/V0O3n24+MGjeVhA3OxTEnUVn3cPu3EAnF+dy56HVu89Fyiw8f7YqVuysves+1wFrEbvr2+Z323rjZZ28YAr3dVDVcM4rr0/cf/4Zsxq+fifDZ53rjzlz9VLW3nUfG4eb8UvJsTnX52b8cPOVS5f7DpuSTg2f7sxMTMm+JmUE3VqCpLwvnMfCfR2798197oPWHQ6SMtMx4PpS5l26a0y76zI7UtYqds4flOVt6HMlZcZgwLrDrub+vA26/mzI+JWVvc+MGWO58spjOOKIIvbaK+MliDSJtvSJiIhsgcrKCubPPwFYxCmnwPLlgRcRySpq+kRERLbQ1lsD/JTp0+G888C6S+6IZDE1fSIiImn5N3fcAWPGwIgRYdcisuVaVaYvXenOgXKlmxn0XZ+Tq3IzaU2Z8ZdyW6Rmh9z1UOuXr/Cf7mSL3FyWe343O5WSIXTqyS/rtYmqk6xwZss5s95Sbm/n7XyHzVonC+XOP0vKnbmZNLPWOW9Xf14xVuXM4auq8h925+I5z7Vp17bB2kw3f4aPJU6Gz5mTR9s2/sN5zv/VlvmfK9r7n9uYmwNz6jdrnRyY81ogltfw6W6OzJ2hmFR/DOe+ubku575a93Xivo/cDJ3z3Lqvy8DXvZO3dOdXpqzl62b0HCn5xuKG1zV2M3/u+yAo+5ty+WXOWsRJ52/uDF/gTME0ZUOGb3Pi8ThXXWWARxgxYigjRpwDPEk8HqeioiLk6kQ2T1v6RERE0lBRUYG1lrVrh3L44VBQ8ARvvGGprKwMuzSRBqnpExERaYTCQnj+edhxRzj+eIADwy5JpEFq+kRERBqpc2d4/XXo0QPgX3z8cdgViWxeRjN9xpjewBNAN8ACo6y1zTbmsqlzoIKuL0jy9aVkfwLyhUG3nXLYnd/lCJo1lzIHr6bheWF5PbfxH+Fmp9w1QN3TnVly7rw128WfQcyrr/dffsES/2H38XTmv5ntyjYemOesbbt1F/95Fzmz49z74uYvnVpj7vndzJ2bU5vv1LOdP/8YW+ivx7Z1cmUr3XWKncygm/Fz5vDF6p0cWpeGZzC6mcOU8zu3l5JpTM6HFhf7Twt6Hzi1474u3BxZt1L/6e6MxBXOPErnde9m+AKXXnDn7AWtee3e35S1gZ0sq7vGdUAOz80IunMDG1prOGhuX9DcUvczLXDtXTd/GLAOcjbbZht4803o02cp/frVAUcTjy9Qvk+yTqa39NUCV1prdwX2By42xuya4RpERESaVa9e8N13cbbdtoTi4o+prNw+7JJEUmS06bPWzrXWfpL4fSUwDeiZyRpERERaQjwO778P224LMJ7Ro8OuSMQvtEyfMaYc2Af4KKwaREREmtM228A77wB8zGmnwciRGuAs2SOUOX3GmPbA88AV1toVzmnDgGEAbWh4BparuTN6KWvxBuRrGsq8BK1lG7S2bOo8Ln9uyl1jNGW9VidLZZc56we52Sgn31M/b0GD9bnrx6bkzNwlTp0slP1+hv/8bv3OHL+UWXQFBf7Tlzvz3ZJva7p/rVzj5A3dzJ51btu4tXd28oor/dmk2i7+xz7fyZlR7Tz37mO3zrm9Yv9zY/L9GcWU3JgzZ6++x9b+k6ucepwZjSk5tVVO9qqz//Fyc3R13Us2/J63xJl56D6vTq1uHpE6f6bPOHnJ+jnz/Ke7tQet5bvQn7d0510Gcd/HKbPm3AxhwJy9OndtYedzw/1fe0rWN43PvKBMXVCtgflMN3PtzigMmMsX+PndcCw5tZ6kvzVlZWUB505PSQn07n0BM2feypVXnswXX8D99wdHPkVaWsa39BljCvAavqestWPc0621o6y1fa21fQtoeGcFERGRxkj+W1NaWhp8gTTNmPEVdXUnAzfxyCNw5JGwcGGz34xIWjLa9BljDPAwMM1aOzKTty0iIpJJ3obs3/HMMzBpEuyzD/z732FXJVGW6S19BwFnA4cbYz5N/Byb4RpEREQy5vTT4YMPoG1bOOQQuPPO1OlDIpmQ0UyftfZ9UkfYbZYxxpeTS3ft3JTbd9fBDJidl7KupjuTy+HLuLj5QjfP4mZ1upTQEDcLFLTGqLt2rl2y1F+rk/1JWRPUzR65a5Z29q9nyxp/ptB09efM7CL/nD3T0Z+DixU551/qzxyarZzcmpsrczJ+dn7S2rvOWrf12zs7jK8LmCe23LktN5PnZvzctXxX1/hP7+CvtbqX/7Fs68wkrO7tv7423/m/I6rp5X/t1Bc0/L4o+nKm/wg3k+fO0nPUd/KfHnPmIKbMZKxLSrHXOnPlnMfKOOse15c4MxHd/KPzOog5r7uUdYvdGYbue95d99jNezqv45SMoHvYfR+4r2s3m+u8r905e6bAmevnfs64n3HO2sLJ73s3kxyUqUv5/A3I3AWtXR70+Z326Wlm+jIlHo/jfckF0AF4iOHDT+PGG9+ksvJwWuCbZZHN0oocIiIiLWT9Or3ezwrq60/jvvtgzZqD2H13GDs27AolStT0iYiIZIgxcNFFAD+mRw848UQYMgSWLw+4oEgzUNMnIiKScV/w0Ufw29/Ck0/CHnvAhAlh1yS5LpQ5fVvKWuvLkQRlPNKd0xeU8QvKvKSsVZlUa8pli9zZav6HPmXtWzf/4q5n6qaAndrdNUvdOX6moz8r5K5J6ko5/2Ino+dm7lb65+Slzt0LyGOW+df6rXNn09X5p526ubvkzGB9G/9jkbfC/1jUljiz0dr4n5s2q/wZvpo+/jl3+Uv9t23dtXjz/f+3qnUyfflV/szf6r59fIfXdXTymgX+2zfOS6Ht1/6Zim7mb91O/kxj4Qwnp1bkn3nozhl0Hz93LeO69v7nKj95Np9z3av7+DN0hcv8ubGCeU4Gz3ld1fdyZg7OcuZJupk+97lxc7ptnYydm0V1M4MuN+/pvM5NG3d9Wyej6L7v3fdVlX/OYV7XrXyH653Hx1Y7a/UmfS7FnLxgyozBoAyzO8szzXV/gz6vU24vzbXVs108HqeoaH3Wbz9mznyMAQN2AZ6lZ8+7mDVrUpjlSY7Slj4REZEM82f9PqK6ehduugkKC09n9uzXeeAB7eErzU9Nn4iISMiKiuD662HqVIAp/PKXcPDB8OmnYVcmuURNn4iISJbYcUcoKzsfOJsPP1zIPvvUY8yDGNON8vLysMuTVi6rM32uoDlPboYkKFeXsvaju26lc3k3D9TQ9bt5GTdj56pfuqzhWt2MnJsvdNYwTZl/tqzhpzolO+Ry5/C5GUOXk41yL++uV1vX0X/+vFX+x7a22MnlVfvzRvWl/sfbNxvPydTVObXnrWk4u1TXqeHzp9TuZgadDJ87R88468nGavx5xQ7T/TkuN3NY19aZ3ebM0XMzh26968qcTJ5zfW3m+POe7lxBN5NYW+zP7eXPXrzhd9vJ/7y3neuvraaj/3W/rof/tgor/Dkum+cf+1m1b7nvcPF//essk+f8PzfPeV86mbmULKpz+ZR1lZf4T6+fOcd3OObOMHQygu7awTjZWfczx/1MSsk9u5+RSRlA9zMlZVanmwcMmLvnClpb15VyelD+0pWlc/oao7KyAoBly+Dmm+FPf/o5bdv+nMrK4VRXQ5s2DV9eZHO0pU9ERCQLde4Md90FX3wBhx4KcAe77gqjR4O1ARcW2QQ1fSIiIllsxx3hpZcA+tOuHZx6KvTrBxMnhl2ZtDZq+kRERFqBePxbvvgiHziPSZNm0L8/GPMGxuyHMUaZPwmU9Zm+5JxH0JymoAxJumtNutzLu2vzJufcUjJ6zpqZbl4m1qeswds2zpqhKfO9nH37jbN+qzuvzF3/FScTaFb6c2m4mcTChjOKde5styVOXme2f55aHv55a9aZrRer8T83NR39pxfN82exknN8bk7MzdC5GbT6An9OrM6ZrVa4zB8eWtfZ/9wWOpm71d39199mif++rCn135e2C521fJ0cWUqGz6l3yT7+HFzRcv/9bTvPP0suVuM/3eb5D1dt678+6/xXsXCp//4UOmsZr92u24bf3Symm8nLr3LWnl3ufx3WdffPHHTzjUWL/e+rup7+OXZuNrRwgT+v6L426t11lJ11hvMKnY9Q530a693Dd9jO91/e+KOoxHp09x/hPPd2+gz/5d1sbzf/Qq52vn+dZvdzyXfeBmb6bYmUTLTD/Xx2Pz9Tbi/NtX2joKKiYsPv1dXwwAPw+98fwaJFH3PiifDii7uFV5y0CtrSJyIi0sq0aQNXXAE//AAjRsAbbwBM5bTT4PPPw65OspWaPhERkVaqQwe44Qav+YPbmTAB9trLW9N3ypSwq5Nso6ZPRESklevaFeLxUaxc2QW4kbFjl9K3LxgzDmP2xxij3J9kf6YvObfhZkbcjjVlLdyAmVYpnDlQqbPy/PmfhjIvsRJ/FihlnpZzfutkg8wSZ81Rd76XkwVKWfOzwJ8jc9dfdWe3mTVORjDfyU8W+zN6sWrn/Gv9s9pia/yH3WxSdb8d/LfvrqXr5MJMvf90dzbculInH5SUFXPn6rmXXVbmzzu2WezkzmL+Z6u22MlROUslpWT8VvrPUNfG/1jkr/Hft+V9/M9dh1n+21/b2Z3z5798m6X+21vZ05nVVt1wHjOv2n95NydX08Ff3+I9/C/G4vmbH5jmPjb5q/235b5DrZMN9c1fBAqTZgACrNndv65wbJ1z/U5m0F13Oc/NkjrrLrvrDFs3C4ufu+5zrFtX/xmc9039An8Gz834BX2uuJ8DpsSfxzRJp7sZPnemX8ra5G6G2VmPu36hP68YNEPQ/fwMmsPqXl/KFov0Iog5KTnzt3w53HcfjBw5kMWLB3LkkTB8OPTv775KJUq0pU9ERCTHdOoE114LFRXwhz94y7v17w/wCU89BTU1AVcgOUlNn4iISI5q3x6uuspr/h56CKCIn/0MttsORo6EFSsCrkByipo+ERGRHNemDZx/PpSVDQQGMnPm21x5JXTqtBxj7sSYnsr9RUDWZ/p8uQ537UUn41HnZO5csTTX9NSVtgAAIABJREFUqXQzJ/nd/LPkUtbDTZrn5s7Rs858rFipP9tjv3fmbzkZPndNztjW/nlcbobPzeQVTPfPxXPZLh39h52sUqzKnxVy10St6ei//YIV/u8O3Plsbg7NzbnVdPDXX1PsP71omZM3ctarTZ4l5861W7Krf+3Zdgv9ua81pf7zt3MyalXb+E9vu8hfS161vxb3/Gu28mdqerznf90uL/dnpaq6OWvhLnNmyTnv4uoS/2PlZvzc2XjVXfyPdXWJ//QOs/yXryl25hg649nc58qdI5jMfd7WdPPnK/NX+x/bImeO3qL+cd9h974WLfLP+ave2v/cFy5zZn0W+h+LmHN7Lvd94Wb+3HWfrXu4vbNmdJHzPnYyfynX7zDL/Z9Jduly/+lJs0Td9bPdzyw3w5fC+TxOyeQ5Zw/K7AUdTnduoGxaZeX0Db9PmgR33dWJf/7zamKxqznjDLjsMth3X+X+cpW29ImIiETQvvvCs8/Cd9/BRRfBCy94x8EHPP00OOsfSA5Q0yciIhJhffrAvffC7Nnev7AVZ50F8TjceCPMnRtygdJs1PSJiIgIHTt6X++WlR0NHMO8eeMYMQJ69FiHMU+zzTYnY23g1UgWy/pMX3IOJGVulHNeNwPiZlJS1n7s6l+Xs26Rf+ZXXhf/bLuUzIszM8uuSMpmufmUgHxMrKsz/8tZGzfmrK2bsr+9MwcPZ85dyunOPC93TqCb+6pt588euRk+N6Pnnp6/3J/HKVzqv303S+Wuh+vOynO5ubm1nTaev1OFkyVyHpoFP/I/Nu1n+k93M291TkZtlXPb7ZyMX007//nbz3FyaXv5H9t1/rgkRc5yqbVt/deXMgewyH/68u2cfGaNs5avP0ZHnv9twqpt/OfvMNt//9oscTKMTgaxbdJaw+2/Weo7rWYr/xw+UxzwOnTWznXzlq5V5f5sbPFM/xrN7uvWVV/cpsHTbSdndt06p55a533rZGVT1lEu9D8e+c4cwpSs7XJnzWlnTeyUtXgXOWtyJ5/mrl0esJauXe3PS7qfl/VV/uvLc9fadW7PzWgHZfhS6mv4pSBpSM79ffst3HdfIY8+eibz5p3JvvvCpZfCaadB27YNXIlkJW3pExERkU3aYQe45x7vq1+4iNWrYcgQ6NkTfvUr+OqrkAuUtKjpExERkQa1bw9wP198AW+84Q16vu8+2GUXOPRQb4cQ7WCd/bL+610REREJXzweJ+aL2mwNDOWdd4bxzjvbAguBR4FRxOO1vmXhJDtkfdOXnNNzM3pu5iMww5dyeSej18GfrXLXpkyewwdQ78zeM0l5GlPkrG/qrpHpztVzMnpmmTNvy5nPlXJ6h4Yzg9ZZA9Q4a+e6GTp3rVv3dHe+mZu5W7aDP+xRtNh/+eqt/Vmp2jYNZ/ass006VuvMmuvsP1yQFHVa3dWd+ee/riIn5lTtLI+6ppuzvqqTCYw58cqiFQH3JSUv6T89NVPoP9zOvzwrM/v7Dxcs919/fYH/uexQ4Z7uv3yhM+6yaLk/l7aug//xWNvRuT9Ozqe+YOPjX+WsPdt+rv/BdK/bXZe4rsh/uptvLJ7tf10WrPQ/OWu28T/Y+VVOPnHaHP/t9fTnfs1a//ndTJ5xsql1bfynFyxxcnAr/fUaN7vrZPRi8xpe3zYl6+uuJ945KTC6xl+L6ejMBnXyf7Fi54Xa1v8etiv8n0ku68z/cHPObsbP/TyuW+bMOnXnrEqL21wTV18PEyfC3/5WytixV1NXdzWVla8zejSccELqnzsJj77eFRERkUaLxeCoo+D552HGDLj5ZoAdOfVU6N0brrvOWwZOwqemT0RERJpFjx7w298CbMu4cbDffnD77bDttjBgALz4YuoGacmcrP96V0RERFqXeLw3Aweuj1/0As5nwoSfM2FCT2AO8BjwEPF4vbJ/GZTVTZ8xJnV93OTTA+ZIuYLWfnQzJzFn/VtXSsYleYaWm81x1w1u71zWXXNzlT/fYt0ZVl39MwLdNT5T5oM5akuc+WJOhs+dX5Zf5f+vWXWp/7Fvs9Cffyx25qe52aa8ajcn5j/dzXK5s+Kq/SPBUnJpNumpdefm5Tlz6laW+XNhef6oE2u6+WvJq/af3zgPtbv27TrnqVrXueFM3aq4//Y6fuc//+pS5/brnPqdpZPazXXm9u3sL7jLZ05Gz6l3bRfn/vijVti8hmfdFVRtvP2C1e7z6n8P5jvrFq/r4OQFneynmzdc1dufgev0rTMLzuGus1zVw7+Wb0GV8z5w1wJe7KxJXeLPubX93j9nr2pnf6ax+HN/hrC+1Hnwnc8Rg/8zybZ1ssMVs/3nL3GGPiZvYnGu283kBX3+NbSuL2wiw+fkE3E+j93PZ3cNsJTPa/f8klU21cjV1sK//gUPPtiDceOupb7+WiorJ/KPf8CJJ0Kaf9KlEfT1roiIiLS4/HwYNAheeik5+7cdp5/uzf379a9h2rSwq8xtavpEREQko3r2XJ/9245XX4XDD4e//AV23RUOPhgefxzcRVuk6dT0iYj8//bOPE6usk73z1tVvW/p7nT2pDuQAAk7RARx4SoqOCoOqKA4IyMSdRxHr44rzr2OI6PjMl6YQREREQQFFMeZe90AFRcW2QIECGTr7qydTu97d1W9949q7Po9J6lDpau7qrue7+eTT/L22X7nPe85ebvOU88jhMgLzc2r8PrXO9x5p8PExCIA/4A//vE5XHYZUFXVh5qaW/D44/mucv5Q0Jq+AKzpCMluDGTxclYuZUNm0g8CQV8/V0Ldl66RYf0Ka/hIs8fLk0vIl4989QIaP/J+S5LWhzV6Ad89ysIda7TapIEVdv0S0txNVFk9D2vykpRX29dM2cQkCysZzM63L0Y6vPKeqWsxUZXZV441eVFyla9uJ03dUrs8QuuPLLbt0SarParbYs89ScOodqdtd6+z7XK2ahskveNqO1ZGl9jjlXTbdtcr7PpVT9uxM7zM1l+1i+8T6p9ltkPL+qf+Pbjcrhuj6FjOKWZPxSD23AOawVV2XJYM2dpidtgj2kv6T9KeTtTGqE3enTTOR1vsfVzZ1m/acfIBjPbTQOas3gbbIZER8vdcRoOv1x4vPSzVL7CaPTcUEqfAvn7sWzpgNYFhmumAhyAJusJ8WKXpmx8cSvvnPfD73wM33FCHW255K047DTj9dOCKK4B3vAOorZ39OucL+qRPCCGEEAWDc8ArXwncfDMALMO//3vqO0jvfz+wdCnwnvcADzyQmhyK7NCkTwghhBAFSi/+7u+ATZuAP/0JuPRS4M47gZe9DDjxRODqq4GurvC9iBSa9AkhhBCiIGluboZzDpGIwxlnOHz72w6DgzUA3ounn34IH/kIsHDhKJy7Dc79j5TV2+SflpaWfJdfcBS2pi8SCeQzpsMakIBPFGnw2PcpOWBDRqMNZP5GPlWugjQkQyRIqkrT27Dv3hhZkHNuJfnsRdr3m3ZitRWSJUMyPlnDVzJg9TjDa8mnL2H7krVMDc9aDeLgSlv/4DJbf1kvecdNUD3UdaWD9njDi+z+WGc3Rnm0rA3rXzW1fYKGULyc2gvsdWXNW7za1hYdtrUlyVtqoooFiqwzs+3yLttXnRvs8rotlGt8stVCVSwkfWic6o+QLg3EII0l6q9S6o+JDVa7NX7Q3nfl++36Y2n6mwT1PdjOkqzhSnsyL49wbnK97Svv2MPQXrvSQbpWlP3L2lH2CSwlPSVn/zJji+0JJMrpeJRJXbXNdoCPUg70uB0LScrYTqxdZtol7VOCUNbw+S7bmayZC2ii++3zk339As9f0ujxs5010j7El481f2J+Embc/OSTwA03lOOWW96J3t534phjUq+B3/1uoLExsza8GNEnfUIIIYSYk5x0EnDNNcDevSmbl8bGlN/f8uUA8F08+KC0f+lo0ieEEEKIOU1FBfDXfw3cf39K/3fZZQBwEc46CzjtNOBb3wLo5V5RokmfEEIIIeYNJ58MfPObwMqVZwJ4HzZt2oT3vx+ore2Hc9+AcycVreavsDV9DPsykeaDfaIC2bh11twnMkF5uMwImXiRDo89tIyPFWn6fBXpD3ttrfEli0y7hPQ2AT+uMdsXsT5b6+gyG5A63mT7omqv3R9ri0p7x2m5HSqJMquVqOqwn59znm1kjLRQZB82sIq89CiCtJR+Q3Mc00nrp+v2IiRiY2+2xAR5HJbZc+Fs2XiNPXiyzNZesdqeXGWp7ctOWO3oxGpbkO+wGrmh5bbehuU287Rnu93fwjX2q2y9sNe+tMaOraE+e7yyVXb/fe02v7V8MwnrllAe7elWGzawZaq+hmfspqOUQxwnPWRsMLNv34CNykXj01YkyOOUNX8R0poGxvU++4yYqLbPnOhY5uzf2h1WSxvtp/2Rz59L2P0lq6YXRsraXkTS6o+RZu6olXbVHrpJ6XnIPn0BDR/Xwj577LOaZfAq+/ah/9DrieKlvf1pAKnXuw89BHzzm7W4/fa/xdjY3+JlLwPuv/9iTEwAJSUhO5pH6JM+IYQQQsxbnAPOPDOl+du7F/ja14CODgC4HatXA//yL8DBg2F7mR9o0ieEEEKIoqChIfVFj+eeA4A3Yt064MorgRUrgMsvB554It8Vziya9AkhhBCiqIhGgebmzbjnHgdgPcbGrsONNw7jlFMA534L5y6Ec9F5p/0rbE1fMml1HyHZuuzblKRsxwhr8BjW7LGmjykrPeyiZLXdV2SQdFsNVl/ImrxkXebQ0USNPTZn6XIGaFm/1dt0r7f7j41Z7U//KquXKeunrF3KSE3PugWA6LBdXnmQtq/InME6stiuHzlo12efvvJO2x5rTMverbSaMxchH7yFVl/Z1201a5GY3b6iyvbl8C6rn1xVb73VRuN23B4cs+MwPkY5xLVWhHjRyx807R8+9FLTbiINX2en1eBx/cNjpJ0ascfv77XXPrLAni/rJ9kXcPB5qzEs75y6dp3nsHcbaUk7bF8Nr7DjKqANpXExsCKzh6IjfefQYrs+j9PRBvIwJM1fedy2Kzoz64TZX5OJjlIeLWl3E3W2f/g5E0aycWqsssdfpM/ehL7HajvRYsWlbr99HxbIIufnbZJMGdlnlTSCnF/uO+3x5MIhpgt7AHZ3A9/5DvAf/3EO2tvPwdq1wD/8A/C+92V3nxUy+qRPCCGEEEVPQwPw8Y8D27cDt98O1NYC73sfALTii18EenvzXeH00aRPCCGEEGKSWAx4+9uBhx8G7r0XADbhM58BVq5MffK3e3e+KzxyNOkTQgghhCCcA179aqC5+f0ATsHg4K342tfiWLlyDM5dixUrzsx3iVlT2Jq+aBSRNG+9ZJ81YkqShi9SY7VVjB+2nlmBrF7SsLh6q41CIMuXNCrkA5iJsMxMX0YehGFaoBHKY221xnYHXm59ACu6rVZorM7O/6v32eV9zfb47Jvno6TRIzkk+7FFSPo0YstDWTdlqNJIZS+9+CuooD1TurxIKWV2xu259rdakVrlfspTPdsKBjs77LhwJC7a3rnQtCvK7LiJLbbj8KTle01776AdRz987CX2ACU07ohLTnnYtH+1+zjTXllr31E88/ujTXuCMqbXrLA50G1dVlA53kt5r1W2vtE03ZwnDVzlLnthx46zfRPZa7U01e12e/YwrNpj2+znyBq/qg7y2QvJkI6Q711fi70vqvbb9cdr7fLyLjvwh5ZZLW455RyXH7D9MdpkT4CVRpEJ0kCOk5417bnjSXPHKaVucZP9AeV3+0UkrN1zwG7PGj/STPPx+PnOWb+B7F96ngsxU6Rr/1pbgS9+MYYbb/wg9ux5Lz70IeDTnwaWLTvs5gWFPukTQgghhHgRtLSkIt22bgWAm3HddcBRRwEf/jCwf3/IxgWAJn1CCCGEEFmQcnHZiOefBy69FLj2WmDNGuDznweGhkI2ziPO+8L94ntddKE/q/rNf26zJQvH+nBMW+D1LEUcYZxe15JFQCCbha8krx9Nm0OHRLj5OmsLkqi2r234tczoIvsqOjZEr4fp9S/HqsWGEhmXd62357roMYrqWm7PdXghxWdRMleU3ryUUNdxnNbIUoo+o19H2KrDHWV3GH3G7nC8bmp/HIs23G5lAL7cjovSBnvtJkbsa6oli6wMoGuAjj1k++ovT3rctH+9e61pj4zZ9Y9ustYUz++z777fts7u79FuG58Vi9DrVbKMmUjasTI8bo/PsW6ot/dJOVnWnNv8vGn/cqd9neyTU9duYsSOs6Ym25f9j9hXip7eAY6vsscuqbAeLH6HvRYTTXZ57WZ7/Al6REQpGYzHLePokcLWRSVDZGU0atv8erd0wC4P7P8Ajc1ae+0qNrWZdvyopaYd6047oW76KmIV35R0E9fQTR6nd+e8PkOWLZ5iMJMDVqLBMWueYzjJkutXY7c96r3fkLmIQ7Nhwwb/yCOPHMmmoohpaWlBW9sL99waAF8E8FYAewH8I4Cb0Ny8MmANM9M45w57L+iTPiGEEEKILGltbYX3fvLPVnj/VvzhD8CZZy4D8B2cfHICbW1LQ/czm2jSJ4QQQgiRA84+G7j//pTPX1cXADyAjRtTxs+FgCZ9QgghhBA5wrmUz98zzwDAV3HjjcCxxwLf/z6Qb0VdYWv6Io3+zNLz/txOkgYvQpq6yBLy/eBYNdKwsKaEcRli1gAguWLRYZdx7BpbsnDkUXyptSMYWWJrr9xjxUY+mnm+PrqIYuDIXma00eq84hQvxbFsYcsPnmKPX7XLrp8ISbGJkzwzXkXjkrRNiTrSb1Kcly+b2qBqke3rNY1WM3dg2GqV9rU1mvZ5pz1p2o8eIA1d1BY3Rhq67l322t7y+utM+1cDJ5r2PzU9bdqv3PwWZGJltR3XS8qthvEnD1lpx+q1+zLub3+ftYypLrf6zu5nrSVNfIG9j045pt20W3unNIIc0cZxffGjrC4s2ma1rPEa0l/22OsetaVibIEdR5V7M8f5VdK370qG7fbj1Xb7mj12HA4utXrJCMW+VR4kXRoxQrFv0Ql7/PonrAaS4xhL9ttrP7GE4h57SLSYDsemtVr/G39Ms2m77Zkdavn5GbBYoRjN0Odtjx3n/P/BPf5H0vSJgiOl+6sFcB2AlwH4EVasuAq7dj0esuWRI02fEEIIIcQsk9L9PYl4/GX40peAkpK3Yvfun+NXv8pPPZr0CSGEEELMINEo8MlPpqLdgIM47zzgqqsCX2qfcTTpE0IIIYSYBU4+GQBeiksuAT77WeDCC2fX16+wY9gI1vC5MspUYm+8EK88TAza/VWRsIx1c7Q/1u0ZH8AB2jdFFvkaq1VKllD8U5fVqwwvt7XFhsnzikqNl1vtURmVOlZrl3PsWsmAbR88wfZ9lLRKrOEbXmKXl5El2Mhiq1WKDdrtG9ZZ3d3B7VZn5yqsjsyX2Q5I92+LRe25PLHDavIi3eTHuMCe3J86rJbp5CardfrTXrv8dc1bTPtgo9UMvufhy0z7zFWtpn3rgB0r71xpY9X+u+Mk035oR4tp/9NL/su0Hz56FTKxosrqxA4MZI4zfMM5j5o2+/J1jdqxanwIWZtZbsdBcshei+RCus5R0pqOkna0lMO9LONkQVhqTx0ji217gsYl++ZxfGHpoK2PffcmqjL/nl2z2469soNWBzey0o6lsi4rYuw93eqM656hGy8Nd5A0zgut9tQts53h+HnHmj2KqeQ244dJp0waPcfPe/Lti/Lz38oZhShYmpub8IMfOAAfxk9/+jU0Nm7C3r2no6EhdNNpo0/6hBBCCCFmiSl/v/+DH/84irGxE/DKVwIdHTN/bE36hBBCCCHywIUXAsB52LkTOP98oK8vbIvpoUmfEEIIIUTe+C1+/GPgqaeAiy+e2S93zClNXwDyeWLfPdaIRMiHytVSliTh+60uL7HOardie7oOv3FN5mxdk4EJIDJBGr2o1RKxTx9r/Hh5vLKK2vbc2T+M/cHYbyxJsreRBlsfa6ViJP9hOEs3Xm21UD1P2gxWLLc79KT98iV0l2ybOv/K0+117Kds2rPPesa0F5bZ9Q+OZR4nyaQ9l829NnanMmY7e/1Sawa3e4gCYEnXwRq+kxdYTWE8aa/tf3aeZtrfPe77pv0PrRdmPP6bVm827a2DVifWPmwvdnWF1ZXt2W+Xn3PsVDbv5krbN+z550bJb7GUNHIH7SMrdpwVcsV+b33phpeZJuIVlPHsyH+Sxm1lp11/rM6uP7TMtivo9UxQe2vXj8Tt/kea7Pklyu19XNLPGkd6TuyjfPI+O5ZNXjhp8txYZt9SX2ZrY189VlOyps/VWq2oi9pxl9hj/SMjC0kHTc9jIeYLzc3NOP98B2AjfvnLbyEa/SyAq9Dc3Jzz3F590ieEEEIIkSde0Pglk9/CO94BxGJfwDPPeLS1teX8WJr0CSGEEELkGeeAq68GqquBj350Zo6hSZ8QQgghRAHQ1AR84hPAL34BAMfnfP8Frenz3sMnpjzWIuTTFObrFKm3vlOIk2YlQXqbIauLcwus5iS2jzyvIlb3huRUrYkGq8WJdQ7YUpqsvmWi1taeLLEKmdJeOleSsMWr7PaJQIwlZYaSH1jv0VYjlyALrAmybquhT52TtH7g6NT1rCnk7ROV9gQjpNlrWNVt2l3PWW1Y6fqpr0BFScMXKyMPwjF7rbb12X2duajVtP+w7yjTjsftONjRYbdf1WRrbSi33mtLKu3Y+HXvOtMeGLed0zthPR57R2z76Brrcfi32y427eNqD5j2fz9rg5MnkvZ8zl9qNY+jJPB84ukW01662h7/109Nnc/6NVaPeGCBvUcr623fjA7ZgbyQ9n2wj7SzpIcs76KsXXokeLqFxxqsxq5qr11e1meXl/fY5UOLSetaY/uqrs2OvWSMNIUjdv+cmV16wI4VxsfsI33saOu1V7Y37auB9PwDPU9Bz1PsseMmzhrn9k7TDmTv9tDXEjl7lzXapOFjXz8h5isbNwKf+cwYamv/Puf7nvVP+pxz5znnnnPObXPOfWq2jy+EEEIIUag0NgLAH7F69cac73tWJ33OuSiAawGcD2A9gHc459bPZg1CCCGEEIXNw3j2WcD78DWzYbY/6TsDwDbv/Q7v/TiAHwK4YJZrEEIIIYQoYA5gfBzoz3G84Gxr+pYD2JXW3g3gpekrOOc2AtgIAOXgLFzSgIQdjTUqIbAGBTHSmLBP1QGr1UIDCYbSGFtpvcsc6WlK+rOrlf26ynZZcVH3Oht+WzJsf11IlJNnIcl7SigA2lkpEgYpzrWUtE3lvfZ4B08lLVSnPf54lT1AaUNmo7/ODva2syLB9LzdCvLJO2m5FWqVRmxfrqkm3Rj59L186Q7T3tS9PGOttaXWO61j2O7va2vvNO3rDpxj2j1D9j54LmJ985hfPGZ9/c477UnT/vWutaZdt9Q+VRLk+1dCF3/bqPVQrFue2UK+unFKi9XaZUV3ZXW2b8bH7T3GWs6Og9aHr3mJ9crc2WTztSda7LWP7rHLObM6NmSfKt3r7bhtsPLGQ2RYU6Y0afTYD7Oim24sgu/TsaX2/Cdq6JnI9zE9J5LVaedfzs878vJst36SbrHVqrJPaUATXULPy3q6Z1lTzc/rhO0bzlp35SQEtpLDUNL/r1m1KnM+tRCzTV3dMvT1AQsWlACYuo+n691XcN/e9d5f773f4L3fUIKQbwcIIYQQR0D6/zVNTU3hGwgxi7z5zR/D4sWA9xOTOb2pP9P17pvtSd8eACvT2ismfyaEEEIIUfQkk8BvfwucfXbu9z3bk76HAax1zq12zpUCuATAf81yDUIIIYQQBcm99wK7dgEXXZT7fc+qps97H3fO/R2AXwKIArjRe//0i92eNSKeNB+sAeEvvSQHrMdVdOUKuwL7+EVJ9xYnwUyV9XdL16hEKVs3UW5rj47aY7kE+XMNWk3b+GJrlFfSb7VQw2sbTbu23e5/cGmM2pmzdWvbbV/2r7Lrl1tLroCGL15mtU4+avtutIn6coL8zbqt9qpqh62/zJ4+hjZYf7e+PVP6ofgSW/t28n6rqbXbDo+Qdihiz+0vjrZD9tg6KyZqKrX+Yk/2Wc3f2jrbeU+N2XH4WIdtr2m0GsN1tVZr9dBB65e25sStpt1Hvn6va95i2vftXWPa+yg7d98iq8V6otOeT2nUjpWWWqt1fWD/0VO1t1g95XOP2dqTFaR1JW2n22r1je1RMuarIB3YQXsty8hqc7TJXtvKNjsOy3vscvbPLOu3yycqaNzTr9XRCdL8UTZv2X4S05LObnSRvZZVOzL79jl+pqXlj3vOIh+ndStI/0i1sC7ZUVYuRjLrcn2/rZ19VXl5knz6HD//hZjDtLS0pL26/S2A43Dppatw6aVW69rc3MybZsWsa/q89z/z3h/jvT/ae3/VbB9fCCGEEKKQaGtrg/ceP/iBB/AqXHfdYng/ZvR83vtpfYkDKMAvcgghhBBCFBttbcAHPgCccQZw+eUzcwxN+oQQQggh8kot3vKW1Jc4fvADIDZD4ruCzt51zpk8Rj9qhVwBn6YQogsbM69QYfUyrGEJ1DdCmpK+ND0OefbF+kiERvv2UdIC0fLx+tKMbSY2lFnvwtm3rD0aq7M/qNpPmrx6u7zreFt/lCy3qndaXd2otfzCRJMtKDJs1x9ZbLVQjcdandtQj/W+iw4d/tpVVNni4gl7rAXVVjt05mL7FfnNvUtNe5CzcYfsOLrg6KdM+6/rHzDtN93/t6Z900u/a9p39W4w7VVl1h/tiZjV2C0pt757+0ett9tPn7E+fo31VoNYUmGvBZ9vb6/V1V164sOm/V9tJ5h2JDY1FtmnL7mAfPQOWnFpfJzuyQY7rhf83tZCFoIBf8lEOS2fyOz2Odxkx1FlZzLj8tJBO05H6znz2m7PPnxDR1ntbllXZv/OkZV23FfutKLFiUY3Ui+HAAAgAElEQVSrOy7pmdKvRkZp32P0UGAfPfpfyFWTj2pIljlrrhnW8DGcvR54/pMcUoi5wugoUFb2S2zaNI5Fi96Lo466ecaOpU/6hBBCCCHyQH8/8Bd/AYyPn4nbbivFgQO3zOjxNOkTQgghhJhl9u8HXvUq4He/A773PeAd75j5Yxb0610hhBBCiPnGAw8Ab3sb0NMD/Pd/A+edNzvHLexJXyQCRzoOQ6nVtSU7rc4rUme1TEiSN1wIboh1eFb7hTGriUkum8pEjfSRT1+T1d6UdFod1QQtT5ba8y7tscdin79kKWVwku9fbbvVFkXGbV/0HGv1MdExu31/i/1QuNx2NaooVyVBchvW5DHVW62Wa3iZrS86Yusf+JMVb8VOsP256KQpL7s95DvnRyjfdcj23Ste8bhp/2zretN+5VHbTHvziNW8rai3uqr/3mk1bo92rzTthlo7Vs4mndfl24837Ve32L7irGDW8G3rsQLKU1t2m/b6mn22npit55adZ5i2T9pr8Yvd60ybNZLpPoiDz9trEWEfu1G772S5HTclTdb7re9Yq/mr3EsaO4oF5nE5sdLunywW0d9i63GUS1y9j7SuC+xy1vAxZV2kU6b7dqLWPuMi5PNXvsOGXscbyDuUcN1Tes/kEvLVq7aCR0eav8hBO659gx1ngSxyhrPTOes8hGRPb/hKQhQ43gPXXgt86EPjAHYDuAjnn7/pz8un68MXRmFP+oQQQggh5gF79wJXXAH87GcA8Ct0d78R9fWPh22WU6TpE0IIIYSYIbwHbr0VOOEE4De/Aa6+GgDejPr6sC1zjyZ9QgghhBAzwM6dwAUXAO96F3DcccCmTcDf/z0QDIqdHQr79a73xtsp4Ms0TpoT0vCxrx9n9UYoWzLgM0W+Ua7Wemj5hdaLz6VpBn2VrbVkt9Xe+BqrRQpk7w5bzyxfRlm5pOEbWm7PpbTfnuvYAtLTJG07zv5lCfv7QNMmW0/nKVZXFgvxyIqRJi8RIuep3E0+hRvsAUYG7A4aK+y13r0zTfNHGrSzTn7etJ85uNi0791xrK21117L3+2wWbUJ0ggmFtnaRyjrFzbKFicstJq6S1vPMe0Tl9rld287zrRZE8i+gs3LrdaqY8yO4990rDXt3butn6UbtOe35gSrCdzbZ09oUY29b1qfXvbnf8dWWu+2cbqOZc02Bzmx3dYa2WI1a2UkmQvT8MVJ8lbWTVrRVbzcttnPMklP0AkrzUX1XnsfJkvtDiZq7H00XkuekZusXpO1vwPr7bWq3GP7d2wJPRc6prTCkd02M5qfZ9hDy+n56Ups7X4ss6egqyJ9NuUCs2bPlZVlbPsx0lwLUUCMjABf/jLwpS+l5KwLFlyFBx74Xzj22NRDa6a1e4dDn/QJIYQQQuQA74Gf/AQ4/njgc58D3vxmYMsWoLf3s/A+kbMM3SNFkz4hhBBCiGnyu98BL3sZcOGFQHk5cM89wO23AytW5LuyKTTpE0IIIYQ4Qp56CnjjG1NGy+3twPXXA08+CbzmNfmuLIjzPj9iwhdDXXShP6v6zX9uJwasVihaY/U+Ac0f+fixhiTg25fl+n7CLvfNU9ol9ulLNpI2ab8VCyUz6AMBIFFtz218ga01NkS1hjDWSFoqyvjseInVHFbvpXrKrBZqvJqyg8nSsKzPjrPhJvJjo0vHmr9Epd0+ucjqeSq2WO3S8Mop/VGsl/SLS+25luyxB5uos9qlFcdYbVNNqT12x6C9to2V9trX0vqPbrNajqo6q2NbVmeFaV3Dmb3XFlfb+2JL+xLTXthol3fuZH820mpF7LU+c81O027tt9svq7ZZv489drRply+fMr8b3WM1aaU99vfOeIW9zsecYfWJO+5rsbXSLRy1Nn6IkOyrotvunzV6TLzcjtPYqN2+rC8770/OtK7dYQtOVFiRYLLEHr+0l8Yu+X0yyXLy+dt/8DBrIpA9HvAlHaBj1ZCAkTTWvt+u72qrMy8vseceyFqvt9pR3v6XPTc86r23QdUvkg0bNvhHHnnkSDYVRcxzzwGnn34XhobeAqAfwBcB/DuAkcC6zc3Ns/ZK1zl32HtBn/QJIYQQQrxINm8GLrkEWLcOGBo6Dx//eARdXQvg/b/C++E/6/bS/+RLw8do0ieEEEIIEcLjjwMXXQSceCLw//4f8IlPAEALvvxloKEhbOvCQJM+IYQQQohD4H3qCxnnnw+cdhpw773AP/4j0NqasmMBOvNcYXYUvE9fuhdThDR3rOFjDQjCNCE9VjvlqjJrp0C+fr6q/DArIqCHiXRZXRVr+DjXcuwYm+da0m01AiVRztJlPzDy9Sux7ap2qzsbr7fnUr/N7q9/pd2+ostqmdgvbWiprQ/kn8a/brCGL2IPj0V/tAfoXmfrZZ/B6NDUASLWYjBAvIZyfodtcbu3LzJtN27PrXKVvbYjcetfduAua/4WOdNeS/bx29Zuv+rlazLrNVfW2rFTWWPHfWenHfeRccqHbeCLY3lkl62fvfX2wv6KWzpg9z/cM6UVK1tqfeSi+63OKzZo+7b1nhbTTpLsrMLKLQPXesRaMKJ6n9XkjTTaWkdtpDNqd2bW8I3W2+05s7qi0167kgE7sGNDtuAwrS3fx4HMbloeGyKd3aKpa5WewwsgZSxmNs7834PvsP/ZBXxQ6+0zjjV4oPVBPn6+z9aX3GP9KiOZctmFmAYtLS1oa9sL4GIAHwNwCoD9AP4dfX3X4p//uQ///M+pdfPlt3ek6JM+IYQQQggAvb1AW9vbsWzZOIBbsH79KbjhBmBkZAm8vwre9xakVu/FokmfEEIIIYqaHTuA//k/gZUrAeDLOO444Gc/S9mxXH55yndvPqBJnxBCCCGKjmQS+MUvUh57a9YA//EfqZxc4FTce29KxxeZZ7Okwtb0RSJw6boN0oAkum2ebXShzaH0w6RRoWzdgMavN7O2yVM2ZGQhfV0nXfM3Qv5byynPdIz0LFE7skr6rS5rbInVG7K/WIL0jZzBmSi3l3qwhbRUw+TVRlnAjU/berqOt8dbsJ2ygiP2eLERu7+SAfIfo64fWmbbnadYrdLYIluvL7HXtqRzSlc3voK8zSpsrdGdVkc1vpbGzZDV6EUmbOcP9VmhWW2FvfbR87pse8j+yriwzmqd9sXrkYnYPltv/yp7Leqr7LUfHbX1J6ps/YNb7PESlWx+Z5sNT9gf9B2T2fuutGPq+MlOqoXjtJfYY1fusjsjy8Ng9q21TAxo8gaX2v1FSC5Zude265+2es2e4+0BeFzz/vg+Yo0da29Le0kD2GPH4vhC+xwI+PTRc8fX2ft8on5qrJayZ1/Y/27kHcqaalLxBnxO/XjmbF7faevhrN1Ipb3PwrJ+hTgcPT3ATTcB3/gGsG0bsHgxUFt7Nfr6voxbb90753R62TDP5rBCCCGEEEGefBJ43/tSsWgf/SiwaBFw222pFI2+vo/A+z1zUqeXDYX9SZ8QQgghxBEyNgb8538C114L/P73KW3epZcCH/wgcOqp+a5u9tEnfUIIIYSYVzz/PFBX9y2Ul3fikkuA3/9+O4CPYXS0Ad/5jsNppzk4N/VnPr/STaewP+lzzuQxBnygKHuXNXyONSBDVuvkyBeKNYO8fWB91pSka/pIo8cavkgPeWRFrLaHMzjL9ltfPcRovh63epvIqK0toCGEPZdEOfmNjdr9DS+xWqzqfXZ5sjTz7w+c1Zu0uwv4q7HGL0paLu+ovyrJey4tstXvshq4sQbbrrT2XxhrIKFZOeUON2Q2/hv6uTWH6z/VXouKbfb4ByvIH3Kh1UK5UXtuvsWO4/bHlpt2ZML2dXyxrTcyRjq5fro2I7Zv/XqrGxtaRvm5fXb7kZV0vNKpsVf+vNUzRkk+OdZoNXBDR9lxW72N7xO7PWfxsubO1ZGWdDCzJo/9Kys7Mnsm8n3EbR+1Y6usY5CW2/rSNXgAEJmg+5h0yr6GnlGkwyvd3jHVYF/SMntT+g7S2FF2bvD5R89b0ki7KIlDw9pEkrJ/HWeli6JndBS46y7g+uuB++4DgPfgootKcMUVwGtfezQika8B+Fqeq8wv+qRPCCGEEHOWZ55J2a0sX556dbtrF/DFLwLASvzoR8DrXz//voV7pKgbhBBCCDGnGBkBbr4ZeMUrgOOPT2n2zj03FZm2dSvwqU8BQEfYboqOwn69K4QQQoiiIxWF1naIJScAuALAXwGoB/A8gOsxMXEz7rijE3fcMbVmsej0sqGwJ33JpMnTTQ5bLRNnL/JyxxpA8tXjLEj27Use7LbbU5Ykakjj0j3l48c5wBHK7WUNH5K21pLd1oOQ9TZjy2yt7OuXLLd6l2QlieiIZInVEpX0kw9elLenTNIuEt3BapfG6uyHyuU95Ns3ZNvRMatFGltg+2t8ga23/nl79OGFU/9mnZanrud8Vpew+17wuL1NxskLLka6tP61lOV70Pbdgq12+YGXUI5yFWkGydfP7yOdF9VbSnLREvIZHCEvvDjp4qr22PYAaQ4bt9lr1b3OHr9srz1ead9Uu8xaXaL3WLuvql324pTZWxAV3aQlpScYj2POxo3ZRwRKBygrt8P63MWr7LnESTtavc3q1nypLYh9+KL9drBMNNq+5Sxe1vh50gr7Mns8N0T34ZDVAieXpeVIP7vNbku+eKxpZg0f++R50twxAQ0eZ+8Sgec5af6SY/zMEfOJtrY2eJ+6P4eGgDvuSGn1HnwQKC0FLroI2LgReNWrjoFzXwXw1fwWPEco7EmfEEIIIYqSTZtSE71bbwX6+4HjjgP+7d+Av/orYOHC8O1FEE36hBBCCFEQDAwAP/whADyEU08FysqAt78duOIK4OUvB1wg+kVkgyZ9QgghhJg1Dq3X24CUVu8dAGpQUlKHr34VeNe7gIaG4D7EkVHQkz6fTCIxMJV9yZoOt7jJttt32+1J85HYYw3Z2Ocvuf+AXV5XawsKyY5M9+lzrOHrJaEV+Wf5CfJm41xf8uMq20taIvLtS9SS7mvYaoX4wodpiWq3W33NyBJ7ft3rrL6ytp3ybctJt8YZpUnS+PXb7buOtxWzr9/gctb4TemF+ppJV2VlW2ZdAOheZ9cfIC1w5X7bHl5Ky/eyN5td3r+KNHCkW4uwZo/6auBoyqdts/tLsHSKrNuq2mx9VR3kjbfY7i86St5xtD/uD9bNjafdRqwfrNtKx5qwtTB8buzLx7m/Nbtt55X22nt4oMUWlCwhTeFB8v4k376xxeRZ2GlPPjqa+ZlR2mGzffk+T9bZzo4esKJIX0WekjEabPQMc2nPHbdqhd0XaZj9IvsMcgdoOT0Pw3z4XJm9eGHZuYH9xegZQBpE0CNWFC4v6PX6+lKvbq+/HnjiiZTV48UXp7R6Z555rD7VmwEKetInhBBCiPlD6rsZL8Nll6W+nDEykopD+8Y3gHe+E6irC9mBmBaa9AkhhBBiRunqAm65Bfj2twHgj/jxj1NfyNi4ETj99HxXVzxo0ieEEEKInNPc3IL29tVIafUuBFAO4EE0NNyFtrYvo7o68/Yi9xT0pM85h0i6txNpOnxHp2knSWPCPn7sE+XZB4rWZ6+9ALTc+FqRZo+1NYFs3sHhjMsxYoVoyXq7v8h+m5MZiWW+tLFu69/Fvn+s6WP/s7Iu29exYfILS2TONI3E7fKJSrv/8RarnVrygNVWjTXaaznSYPU/g0un2uW99lhx0heyhq+CTNzL7TALwMtjo4de78+1rbRt7htmgoZO5S47NkYW2eW1O2x7iDR4da12bPavtPtjL71AHi2/fqGhnkl3V9Zvr0X/avJEfD6zpq9qj73nRpusrqu8i7Sko7b4wZV2XI1X07iusmMhNsT6Rru/6Ahpcfm+p+yn8YXWly+gzSXfvUgnafjq7P+Snvbvt7baevgZmK6ro6xcztb1rdawMRniqxfIzqX14x1WM80Entf8PB5mk0Vl7xYqBw4AN90EtLf/CsAxWLAg9YWMK64ATjrpTABn5rnC4qWgJ31CCCGEKHy8B377W+Cb3wR+8hMgHgeADtx88zF461sDv2OIPKHsXSGEEEIcEb29wDXXAOvXA69+NXDvvcCHPgQ88wwAvBJ/9Vea8BUSmvQJIYQQ4kXT0tIC506Dczegvn4IH/4wsGXLgwD+Gt3dFfj61x3Wr3fKvi1A5tTrXfbdY/UPa0ImP1/+M5zVGFifNCiu3OqFkkOU/VtF27OeJ30ReQiG5Vz6DqvRY48rR+fmF9pc4HgdeVgRpeQfVrar5zBrpphYUptxefle6zcWr7PaqTLS+A0vsZmmUbLsqnve7o8zTJmSYdv39c9NCetGFlMtfXZdl7D7Zq+36n22rxNldoUK8tkbXUCeiXQpGjfb4w8tJt1XvV2/yg6dAJ5ikUfJ4tGRFGu8JrNnInvp1ezOXG9Vh10+UcW+flPtsVq7jPuC4Wzd3rW2uNJB8rVj7ek+e8968uWrbbMawPK9Vus63GK9PCtof4FsXbqvPGVgh91nIL9Nzrtl+DnA3nsBb9F0/9AxMrtkjVyIRo8J8+2Lki9qGMkB+wzw/HwO0xiKnDMykrJZaWu7HcBLUVmZsln5wAeA0057Qat3c56rFJmYU5M+IYQQQswu27YB110H3Hgj0NMDALW45pqU5cqCBWFbi0JCr3eFEEIIYfAe+OUvgTe8AVi7Frj6auC1rwV+8xsAWI8PfUgTvrmIPukTQgghBABgaAhYtepKdHdfCmA9gH0Avol4/Nu44479uOMOSKs3hynsSZ9zVvtGmryAbx8v591xViNDGpREt9Xf8Pacl5vuIxU4FtXKekGGNXyB7eOkhSKfv9Ih2xfJOusPFtDzUGanr7DHj/WQR9Ye67nljyYtEeEoU7R2O/kENlrd3egi0jiSb2DFfmuGlyi3/ROvmhK6sS4sErf7qjpgtUFjdfYD8P5Vdgclw1afmChhT0N7vPIee+6JMvJ+I9lVdTvVG+J5mOwlDR1d6vKD1KZ6hhfba1+9h49n2xVddvvYsO2/6Bid39hUf8ZGM/vwcd+XDNn165+z4zD9OgNAaQ+ZJJKPXWzE7o+zeJmqHdZHb3QZafyetXne8eWNGfcXCcnv9lX2PghoebttwKwnnbFfTqaNlKfr0jSCnH3LmryAZjkM1tjR85T3z5prhjXXCdL4idzS3g5ce20qMaOn5yqcfjrwkY8Ab3/7UpSWfh7A5/NdosgBhT3pE0IIIcSM4D1w//2pV7d33ZVqX3gh8KMfnY2HH/4jnAvfh5hbSNMnhBBCFBHJZMpA+ayzgJe/HLj7buCjHwV27ADuvBMA7teEb56iSZ8QQggxz0l565XBufciGn0OF14IPPTQDgAfRG9vFb7yFYeWFgfn5K83nyn417vp3kycrcseVAFfqAZreJbsIz0Ma0pIN8eakoBP1AIbQpqeXel7rBYoUmNzLZMDg3Z5PX0Nimvjdi+dC+lzHOlxIj12fZDGjjV9jBsj/eLKJXY5+ZPFxsk/rM+eL3uCVZAGcWSV7duyLtIollB2MZ1PJK2cBOWZcj5rojyzjqym1erEJmqtjiw2lKDlpDWlX61Y18YaONa1AXZ5bMSea+NmW9/gKqsLKxmy60dHbbthiz0a5yAPLaJs4m67fbzSLi8ZtP1R2j/VrtzaZZb1vMRq0Gp3cMay1b5y1m1Jpx1X8QYraBxbbO+7ig7bV5FxWyvfJ77G3kcBzSAR6yTdGWVm+367nP05Iwcp+LiEBKJEQPvLWl7OFy85/COfn0HJTisGDTz/2Gs0y2zzgOaPfVjpeOzzJ43fi6evD2hrezuWLv0y9u0DTj0V+OQngYsuOgqx2LUArs13iWKW0Cd9QgghxDzkwAHgU58CVq0CgC/j+ONTr3IffRS4+OLA5xyiCNCkTwghhJhH7N8PfOxjQEsL8JWvAOedBwCn4+67gXPPhfR6RYzm+UIIIcQ8YN8+4Nhjv4OBgXcCKAXwfQBX4Y47tkqnJwAU+KTPJ5NGk8KavYAXHune4qRJCWwfoilhDQprVjBkvebSj8f6k4DmjvbF+pnAsWtJE7jf+uRFmhba2lgLNEG+fEycPLZa95imb1lul1POcLKKtFd7rHaL6+Es35L9VktVucN6JCarrU4t1k19T1ouNzo1FhofsvrKweOsl1pknPSA5EsXG7J9F5mw6/cfba9V7XbyNCTYW268xrY5D5Y1h5EJW99Yox1L5V32PmAvutFFti/DNIexUdJysRx0KHMG6vDiqfMbr7UavrJeuy37QQb8Icl3b2yZ1X7Gq0h/uIs0f5RJzf6PrOFjP8zoAdLG8jOBdcOLbBCyq7B9H8jGDcnaZV++AMMjGRen65pZM8evfQLPFKqVfUoDPn307pCzdAPPX9o+LMtXTLFvH/ClLwHXXw+Mjr4bl10Ww5VXAmvWvBvAu/Ndnigg9HpXCCGEmIP09gKf+Qxw9NEpY+V3vhMAjsV3vwusWZPv6kQhokmfEEIIMYcYGQG++lXgqKOAL34R+Mu/BJ57DvjOdwBgR77LEwWMJn1CCCHEHKC5+Wg4dzkqK3fh4x8Henp+DuAU3Habw5o18tgT4RS0ps85hwhrZjIQ8JEK0/CF+E4FYM0Ja1jSl4XoAwPwd+dp30nO0ORaq8lTcG+HXc56GMrodAdo/+Qf5knD58hPLBq3Gj3W8HnS/MX6yO+M/cwWWA1jpI8yRsl7j/3R0pez7qtyt9UDTtTa2ip2230NHUXbt9rlVXtI60Q6MdbwOcrSrdtqz41zhGNDcWqT5q+CtFMl9lpHhu36pT3kS9hjdWCJ6sy6N66Pl5fvtf0TGyo77LrcF4la8q2j2lmTV7bTamGjS63XXGTIjqtSGrcTq+19EHneamVBXpy+1+pDA/dRgz2+I9881tayRi/go0c6ZV4e0NXRfR6po/syrT7fQaHMBOuMw7LOAxpB1iVn+Xxlwp7f853f/AZob/8JgJPw0pemNHznnHM+gPPzXZqYQ+iTPiGEEKJA2bkTuOgi4NWvBoAa3Hkn8MADwDnn5LkwMSfRpE8IIYQoMIaGgH/8R2DdOuAXvwC+8AUAWIe3vlU+e+LI0aRPCCGEKCB++lOgrm4vvvAFYGzs+xgeXo7PftahuXlJ+MZCZKCgNX1MQMORpQaEs3tZc8L6mQRnR7Jehrz4Ymm+Volu8pnrJQ3cAtIeLaObmbJ5HWnqQH5frM9hTV6yxx4/Qho+9j8L+AqyNonqCRx/sfX4Yq1WbJv1AeTz4axf9hH0daRhZE+wyikdHeu+Rtc02W1JZza+0Hr+VT/dadoJ8gTkrN2yLtI2kQ9gSbfV0KXXeih8lHKGKdd4YpHt2/K9VrPoaFxHR0nrSrnIkVLKoG7fb+tZt9K0Y32kX+X9pY0tXxaW8Ux9t9dq7EqSdlyxVpRJVtlxFaFxVLJ1r92As2xJg8d528mdu+1yztCma8fPGM6nBefZ1tpnTMDXj3XJ5XZ7zht3o1PXijV57MvHPnkBfWGWvnmcAxwG67kD2evzkD17gL//e+CuuwDgIP7wh2U4++x3AXhXnisT8wV90ieEEELkkWQS+MY3gPXrgZ/9LPUlDeB0nH12visT8w1N+oQQQog80dqa+pLGBz8InHEGsHkz8MlPAkA8ZEshskeTPiGEEGIWaWlpgXMOzv0NVq/ux3339QN4D+65R357YmYpaE2f935aOo4w376Al16Ir1/AZ4q99NJqDfUI5PMiH76AXpH3F7HbJ0gzyMeLLrR5s0ySNISBviE9TsD/iz0MY/b3iRhn8dL2nn0ISTuFJGm9ugYyL98/1T+J5sVmWXmrPRZ7/nHeapL0g6w7q95iz41zgkt2W30n48soh7g7c36qJ/1l5VbqW/I8TC6h/Feqf+xo2z+xIRqb5D3HGr7IqF0/2UR61cG0eihjGTXWjzEA+3TusvpCHiexXhrHnFVLGdYBf0zW4EVIt8YZ1qzRC8vGzdIb1PeT/2TIM401fHx+6Zo/3lfAl4/hvqJzZ410grJ2GV4/zPcvVEM4hz4Ya2sbwgUXePz0p8CrXgXcdBPQ0nIjgBvzXZqY5+iTPiGEEGKW+MMfAOBx/PznqSi1X/8aaGnJc1GiaCjoT/qEEEKI+UAyCXzlK8CVVwLACB58EDj11HxXJYoNTfqEEEKIGaSvD1i69B6MjJwL4E6sXPl5nHrqU/kuSxQhszbpc859BcCbAIwD2A7gb7z3vZm3CtlnllmM2WpEWG8Tdrx0H6owvUpADxjiCRiohTI4AzmXrIXi3Mz+zHqb6BKr82L9DsN+YsmtrXY5+Zf5fqu9ChCjazNCmaV1VpvF2cGomPKui7DHIJEkr7eAVxzpB5N11qfPs68dre+7qLZVS00zesDqsHyN9d1zI6SZI+859jBkOLeYNX+lO3ZlrI/XjwzS/lgHR5pGs32FPbcArEmrsn2dPMZ6BEZ37rPr07h37LtHGj3fQ1m6BPtdBpaHaPL4PmWdW2geLXvj0fqB50pIPm66WjWgBwzROIc9AwK1EIHjZfnM4/UDuewFqunbvh1405uAkZFX4ZprgL/7u7fBubfluyxRpMympu9uACd4708C8DyAT8/isYUQQohZ5b77UjYsHR0A8Fp86EOKUBP5ZdYmfd77X3nvX/hd7EEAK2br2EIIIcRscsstwLnnAosWAQ89BAD35bskIfKm6XsPgNsPtcA5txHARgAoB72yzPJ1braExbx5Wj8Qy8avGzKsG1Z76KsQOlbAYoWXh1g/RMg6g+0b2KKFrSF4f2wRE4iBo8gnjpdiCxe2uInwqyaOqUu31thDr/Cq7LiK7rGvL/l1pa+x60d66BUkRcjxq2mOxsIAvR7lyLsyimXjc+e+X2L70u23MWyB+jjWjV9hhtTHNiu+w8bURRJ0LdLrj4T8nsm1kkVKhF/zj9K4p/0Hxh3HB3IUGceoEWxtFHglSaPuhAoAABWESURBVK9z+T5hGUbglSXLQnic8yvXkNe5gajJDMfmezhMDhMqjwmzrQo5HkfUhcVqZkv6/zWrVq2a1r7SaWlpQVvbBQCuBnAvtmy5EGvX9st3TxQEOf2kzzl3j3Nu8yH+XJC2zpVIqS9uPdQ+vPfXe+83eO83lCBE7yKEEEIcAen/1zQ1NYVv8KL2CbS1/Q2Aq3HhhcDo6GvgfR+892htbc3JMYSYDjn9pM97f26m5c65ywC8EcBrvPf8wZkQQggxJ/H+hfi0/43LLweuuy7oZy1Evpk1TZ9z7jwAnwDwZu99iG29EEIIMXf43OdSPnzAtfj2tzXhE4XJbA7L/wBQBuBul/r60oPe+/dns4NsLVey1fxlq7PLpEnh2TTrT8L0gI60OFHW+vD+QiLiAjFuXB9rldgugbRJocdjjR1rjyiuirVQbLXBbT9so8pcPcW2ZaqN9YOLKKaM7F8cWZawLo3tZwI2IWQ74nutxtBxNBhr4ljnRvUE7Gr4eKS5c432fLkvwX3LmkQeC6wJZK1V+tgO02JyX1MEnN/ebtqsReX98X3EGkDWqgb6Iiz6i0h028i9gEYv7BkWYlvC9z3r8qI11jopU7RZaExlWORbyDMtW41gtssLiS99Cfj85wHgBqxa9VU498F8lyTEIZm1SZ/3fs1sHUsIIYSYDb77XeDTnwaAWxGPvxfR6HvzXZIQh0XZu0IIIcQR8OtfAxs3pqxZgMuy/WBYiFlHkz4hhBAiS7ZsAS66CDjmGOBHPwIKNhJEiDTmtNQ0TAPCOrnpakym41uVycPvULBHVWA51xIW58TnEhbfFHbuvH/SagW0TaQ1SlIcVbShnuoj3V2IJxfr7pJpmsEI+fIlSU8YGSNd1wRFX5Vkvk0c7T+gwYvztaJxSVFgYdFf3LcBT8QD5Ju3bIk9Hmn8Ajqyxdb3L7mTdHRhXnbcv2ljP6DFJL0gbwveVxXHG5KujK9ViLY1TIPH24fpiLOFNYeJXusrGHim0X3kWLPHsWvs8ZjhORSqmaNnhAt5RkyXgJco1T5dn77pMDSUmvD19x9Eb+8GLFjQJh8+MSeY05M+IYQQYjbxHvjAB4BnnwW8vwTet+a7JCFeNHq9K4QQQrxIbropFbH2uc8BwL35LUaILNGkTwghhHgRtLcDH/4wcM45wJVX5rsaIbKn4F/vpmtawjQjM708m6zJ2facCmh5QvQw2e4v6+zgEI0ha5NCtVWkGQz4CLL2K013xvmrnEvMvnMBPSV7pXG+KeUIc25wQMPHWbbsf8aeiVQva/gC+yO4Hj5e4Hz3dphmZMkiu5z0kwENJN8nadcu4BvH4yxk3LDPXkB7yt5xrAMjLWnABy9E6xoYh5WZ88ED2boh2tYwWPPHvnyBjO4s7tuARpnvsRCdcdj+mGw1e/nU8AGp17rvfS8wODiE3/72BMRirdLxiTlHwU/6hBBCiHzzve8Bd98NAP8A73fmuxwhjgi93hVCCCEy0N8PfOpTwFlnAcC38l2OEEeMJn1CCCFEBq66CujoAK65BgB8vssR4ogp+Ne72WhQstn2UIRpSrLRoExXw8eatgRrkULOPZD5mSGDEwjO/sO0VYHzo+UBbVGIdivUFzDMh5CP33nwsPsK85nLNimdc4QDy0O85AI6NdaVsY4sJKeYYd1YwOst5Fpk8kA8ZL1E+rUPZOHSOOFxzuM44FvHHolEwPeP4SzgEA0fLw/VCPIzZBqau0OtH6azC4z9tP4Mu25h+sCwY2V9Lllm+c4WO3YAX/86UFV1J17ykrdLxyfmNAU/6RNCCCHyxb/8CxCJAENDH4b3+pRPzG30elcIIYQ4BK2tqS9wbNwIAPvyXI0Q00eTPiGEEOIQ/Ou/pj7l+8Qn8l2JELlhTr/ena7GY7o5mpl8o8J8+sLWz9YTiwnT44TpFzlXM6CvCdE6hXl+MWG+fNN5qRLQDqXp/Q5JSA5x4FxCrl2Yzou95MLGCnsaZqt3DIX7fiJzkHzg+Dw20vdFfZPtPRymTc3GS/NQ20fYm46PF+IVl61mL9feoWH9kT42s82yzfZaTffcs90/Mg/TrOnpAb71rVF4fwtWrtwoLZ+YF+iTPiGEEIK46SbA+3Js2nQFvPdobW3Nd0lCTBtN+oQQQog0kkngm98EgD/g5JPzXY0QuUOTPiGEECKN++8Htm4FZMQs5htzWtMXRraaklz6QGWrl2Gmq/UJI8wTK+x4Ae1QiO4t1Mst7Pgh2wfWT6snW+2mC/HpC9NNsQ9eQOfFfROic+P1Ax6MIfsPZAfT+jwWAh6RlPcayHEO0UBmWsbZsYFxFpIBzQR8/sK0q/yMCNEMMtPVBU/Xp286z4lc6wVn8nl6KGZy/294w/cAvA0rVz46Y8cQIh/okz4hhBBikngcGBg4D297WyXa25/JdzlC5BRN+oQQQohJ7rsPABbj4ovzXYkQuUeTPiGEEGKSn/8cAMZw3nn5rkSI3DOvNX35ymoEpp8jOd31Z5pQvQ/nxYasn21/sVYrU8ZoAPahC+nbMM/E6AKb5RvQwFEt2Xowso9fWN5rWH5tqJ6T+mfano4Z9JXcF1n79mU5bkJ9/FgPGaJ35Pqnq+Wd7vZhpJ9/thq96RzrxeyvULJ2r7lmC8rLD6Kq6uV5Ob4QM8m8nvQJIYQQL5Y9e4CJieNw1VX5rkSImUGvd4UQQggA99yT+vt1r8tvHULMFJr0CSGEEAD++EcA6MGJJ+a7EiFmhoJ/vZtJg5LLfc/E/jPtO1uPq2w1e1lro0LWD3izEQGtVogWKZDNm+X5he4/XZcW4rsX2HdIfmpgfdbYhXi/MQHvujCNIOu+sqw37PgBnz46v7Dtw/SXmdYNY7r+lWGauWyyaw+1fLq6tVw/g7LRCM6mR2Au1p8JbrrpWZSXH0Ak8qp8lyLEjFDwkz4hhBBiphkcBCYmjsGnP70u36UIMWPo9a4QQoii59FHASCKl74035UIMXNo0ieEEKLo2bw59fcpp+S3DiFmkqJ+vTvTGsFMx5ptvUu2GaRMtuvPNNn4/vFvNtlei2x1WJwnm60vH2sEc+3dFsjuJc1htrq1bHObs9l3GFkfm/Sd7DGY7bXK9TMk13m4ufT5KxQfvZnimWcAoBdLly4IW1WIOYs+6RNCCFH0pCZ9z8C5fFcixMyhSZ8QQoiiJzXpezbfZQgxo2jSJ4QQoqhJJIADBwBN+sR8p+A1fTOpB8o12Rx/1rVMs0yYD990tUbZaJ+y1UlN10Nxul5u0/VsDOyfNHthvnzZ+v5lU990ta3ZZjIzWeceZ3nuYZnQ2ZLtfTOTebq5zgEuJKZukZ35LEOIGUef9AkhhChqpuaz7fksQ4gZR5M+IYQQRY0mfaJY0KRPCCFEUTM+DpSVAUBnvksRYkYpeE1fJvKtW5sO06092+3DfPZm2jcwn9dqurnHTM5zgqep+ctWkxioL0TnlutM1kzbhh079FxyrDub7n0228cPYyazzOcynZ19SCa3obl5Vb5LEWJG0Sd9QgghippkMoKzz16D1tbWfJcixIyiSZ8QQogiJ4aFC/NdgxAzjyZ9QgghihxN+kRxMKc1ffOZQvPxm21PxGyPl836Yd5q2eqyZlqfOV0N4nSZbs5yJh3ZbGdKz3TedqHp5GbTO3RuE8Odd34TN9zwgXwXIsSMok/6hBBCFDkO/f3b812EEDOOJn1CCCEEDua7ACFmHE36hBBCFD1NTZkj/ISYD0jTVyDkWk+Taz3OTGZ6vpjjZUs2fmRhGr5ss2lzrZfMdd/n2hcwm+2nq59kss2izTWFpm2dDsWl4Qty223X57sEIWYcfdInhBCi6KmqyncFQsw8mvQJIYQoeqqr812BEDOPJn1CCCGKHn3SJ4oBafrSyKdPVaH75jGFpv/JVE+2fRXQnc1wNu1s5xjP9vbp55/rbNq5xnT1lHOZfD+zwtCkTxQD+qRPCCFE0aPXu6IY0KRPCCFE0VNRke8KhJh5NOkTQghR5CQR0f+GogiQpi+NQtOYZCKXPna52F8hk23Wbq7zW3OZG3wk5Hv/hTy2Zvs+KOS+mGkK+9x9vgsQYlbQ7zZCCCGKHE36RHGgSZ8QQogiR5M+URxo0ieEEKLI0aRPFAfS9BUpha2vmT6Zsndn2ysu15q3XHu9zbRmcToUesazmC9o0ieKA33SJ4QQosjRpE8UB5r0CSGEKHI06RPFgSZ9QgghihxN+kRxIE2fmBOEabtyqf3KtY6s0HVohaxrK+TaRH7h+xTx6exNkz5RHOiTPiGEEEWOJn2iONCkTwghRJGjSZ8oDjTpE0IIUeRo0ieKA2n6xBFRaJmluTx+vnVkxZSLPNOoL+cvub2WmvSJ4kCf9AkhhBBCFAGa9AkhhBBCFAGa9AkhhBBCFAGzPulzzn3MOeedcwtn+9gid/hEwvwRuUN9mzvUl0IIMcWsTvqccysBvA5A+2weVwghhBCi2JntT/q+DuAT0FelhBBCFAz6L0kUB7M26XPOXQBgj/f+iZD1NjrnHnHOPTKBsVmqTgghRDGR/n9NvmsRYrbIqU+fc+4eAEsOsehKAJ9B6tVuRrz31wO4HgBqXcOc+vUr3RNM+iEhhChc0v+vcW7NnPq/RogjJaeTPu/9uYf6uXPuRACrATzhnAOAFQAec86d4b3fn8sahBBCCCFEkFlJ5PDePwVg0Qtt51wrgA3e+4OzcXwhhBBCiGJHPn1CCCGEEEVAXrJ3vfct+TjuTCMd3/xAea1CCCHmI/qkTwghhBCiCNCkTwghRJGjL++K4kCTPiGEEEKIIiAvmj4hChlp+IQQQsxH9EmfEEIIIUQRoEmfEEIIIUQRoEmfEEIIIUQRIE2fECIj8i0UQoj5gT7pE0IIIYQoAjTpE0IIUeTIp08UB5r0CSGEEEIUAZr0CSGEEEIUAZr0CSGEEEIUAZr0CSGEEEIUAbJsEUJkpJAtWmQnI4QQLx590ieEEEIIUQRo0ieEEEIIUQRo0ieEEEIIUQRI0yeEmLNIwydyg8yZRXGgT/qEEEIIIYoATfqEEEIIIYoATfqEEEIIIYoATfqEEEIIIYoATfqEEEIIIYoATfqEEEIUOfr2rigONOkTQgghhCgCNOkTQgghhCgCNOkTQgghhCgCNOkTQgghhCgCNOkTQgghhCgCNOkTQgghhCgCNOkTQgghhCgCNOkTQgghhCgCNOkTQghR5MicWRQHzvvCHezOuU4AbfmuIwMLARzMdxFzFPXdkaO+mx7qvyOnkPuu2XvfdCQbOucGADyX43pmgkLu/xeYCzUC87vOw94LBT3pK3Scc4947zfku465iPruyFHfTQ/135EzX/turpzXXKhzLtQIFG+der0rhBBCCFEEaNInhBBCCFEEaNI3Pa7PdwFzGPXdkaO+mx7qvyNnvvbdXDmvuVDnXKgRKNI6pekTQgghhCgC9EmfEEIIIUQRoEmfEEIIIUQRoElfjnDOfcw5551zC/Ndy1zBOfcV59wW59yTzrmfOOcW5LumQsc5d55z7jnn3Dbn3KfyXc9cwTm30jn3G+fcM865p51zH853TXMN51zUOfe4c+7/5ruWXJHv+8k5d6Nz7oBzbnPazxqcc3c757ZO/l0/+XPnnLtmstYnnXOnpW3z7sn1tzrn3p3jGg957xRgneXOuT85556YrPOfJn++2jn30GQ9tzvnSid/XjbZ3ja5vCVtX5+e/PlzzrnX57LOtGOY+2nW6vTe6880/wBYCeCXSBlJL8x3PXPlD4DXAYhN/vtfAfxrvmsq5D8AogC2AzgKQCmAJwCsz3ddc+EPgKUATpv8dw2A59V3WffhRwHcBuD/5ruWHJ1P3u8nAK8EcBqAzWk/+zKAT03++1MvPBcBvAHAzwE4AGcCeGjy5w0Adkz+XT/57/oc1njIe6cA63QAqif/XQLgocnj3wHgksmfXwfgA5P//lsA103++xIAt0/+e/3kWCgDsHpyjERn4Nqb+2m26tQnfbnh6wA+AWX5ZIX3/lfe+/hk80EAK/JZzxzgDADbvPc7vPfjAH4I4II81zQn8N7v894/NvnvAQDPAlie36rmDs65FQD+AsAN+a4lh+T9fvLe/w5AN/34AgDfm/z39wC8Je3nN/sUDwJY4JxbCuD1AO723nd773sA3A3gvBzWeLh7p9Dq9N77wclmyeQfD+DVAH50mDpfqP9HAF7jnHOTP/+h937Me78TwDakxkrO4Ptp8rizUqcmfdPEOXcBgD3e+yfyXcsc5z1I/XYoDs9yALvS2ruhiUvWTL4eORWpTwLEi+P/IPWLbTLfheSQQr2fFnvv903+ez+AxZP/Ply9s3YedO8UXJ2Tr0w3ATiA1KRyO4DetA8X0o/553oml/cBaJyNOhG8nxpnq87YdCsvBpxz9wBYcohFVwL4DFKvKcUhyNR33vufTq5zJYA4gFtnszZRfDjnqgH8GMBHvPf9+a5nLuCceyOAA977R51z5+S7nmLCe++dcwXxBonvndSHTSkKpU7vfQLAKZP68J8AOC7PJQXI9/2kSd+LwHt/7qF+7pw7Eal36U9M3gArADzmnDvDe79/FkssWA7Xdy/gnLsMwBsBvMZPChXEYdmDlH70BVZM/ky8CJxzJUj9p3Wr9/6ufNczhzgbwJudc28AUA6g1jn3fe/9u/Jc13Qp1Pupwzm31Hu/b/K16IHJnx+u3j0AzqGf/zaXBR3m3im4Ol/Ae9/rnPsNgLOQer0cm/yULP0av1DnbudcDEAdgK4M9eeKwP0E4OrZqlOvd6eB9/4p7/0i732L974FqY9XT9OE78XhnDsPqY+43+y9H853PXOAhwGsnfyWVylSot7/ynNNc4JJDcx3ADzrvf+3fNczl/Def9p7v2LyGXcJgF/PgwkfULj3038BeOGbre8G8NO0n//15LdjzwTQN/l69ZcAXuecq5/8Bu3rJn+WEzLcO4VWZ9PkJ3xwzlUAeC1S+sPfAHjrYep8of63IjWu/eTPL5n81uxqAGsB/ClXdR7mfrp01urM9TdSivkPgFbo27vZ9Nc2pDQJmyb/XJfvmgr9D1LfjHseKa3KlfmuZ678AfBypETdT6aNtzfku6659gepT2rmxbd3J88nr/cTgB8A2AdgAqkPDS5HSq91L4CtAO4B0DC5rgNw7WStTwHYkLaf90w+T7cB+Jsc13jIe6cA6zwJwOOTdW4G8L8mf37U5GRoG4A7AZRN/rx8sr1tcvlRafu6crL+5wCcP4PX/8/302zVqRg2IYQQQogiQK93hRBCCCGKAE36hBBCCCGKAE36hBBCCCGKAE36hBBCCCGKAE36hBBCCCGKAE36hBBCCCGKAE36hBBCCCGKgP8PGEX4mluWUTYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Define the model\n", "x = minkit.Parameter('x', bounds=(-5, +5))\n", "y = minkit.Parameter('y', bounds=(-5, +5))\n", "c = minkit.Parameter('c', 0, bounds=(-5, +5))\n", "\n", "sx = minkit.Parameter('sx', 2, bounds=(1, 3))\n", "sy = minkit.Parameter('sy', 1, bounds=(0.5, 3))\n", "\n", "gx = minkit.Gaussian('gx', x, c, sx)\n", "gy = minkit.Gaussian('gy', y, c, sy)\n", "\n", "pdf = minkit.ProdPDFs('pdf', [gx, gy])\n", "\n", "# Generate data and fit it\n", "data = pdf.generate(100000)\n", "\n", "with minkit.minimizer('uml', pdf, data) as minimizer:\n", " minimizer.migrad()\n", "\n", "# Plot the results\n", "values, (xedges, yedges) = minkit.data_plotting_arrays(data, bins=100)\n", "\n", "cx = 0.5 * (xedges[1:] + xedges[:-1])\n", "cy = 0.5 * (yedges[1:] + yedges[:-1])\n", "\n", "vx, vy = tuple(a.flatten() for a in np.meshgrid(cx, cy))\n", "\n", "fig, ax0, ax1, ax2 = create_figure()\n", "\n", "# Plot the data\n", "ax0.hist2d(vx, vy, bins=(xedges, yedges), weights=values);\n", "\n", "# Calculate the projections of the data and plot them\n", "xproj, _ = minkit.data_plotting_arrays(data, bins=100, projection='x')\n", "yproj, _ = minkit.data_plotting_arrays(data, bins=100, projection='y')\n", "\n", "ax1.hist(cx, bins=xedges, weights=xproj, histtype='step', color='k');\n", "ax2.hist(cy, bins=yedges, weights=yproj, histtype='step', orientation='horizontal', color='k');\n", "\n", "# Calculate the values of the PDF and plot them\n", "gxc, xpdf = minkit.pdf_plotting_arrays(pdf, values, (xedges, yedges), projection='x')\n", "gyc, ypdf = minkit.pdf_plotting_arrays(pdf, values, (xedges, yedges), projection='y')\n", "\n", "ax1.plot(gxc, xpdf, color='b');\n", "ax2.plot(ypdf, gyc, color='b');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The amount of code needed to generate and fit is very similar to that of the 1D case. In order to plot the results, it is needed to work a bit more if one wants to get the projections of the PDF in each dimension, since it comes necessary to sum the contribution in the other. By using *numpy.histogramdd* one can extend the previous code to the n-dimensional case, although computation might turn slower due to the curse of dimensionality." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Binned case\n", "Similarly to what has been done in the previous section, one can do the same thing on binned data sets." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
FCN = 7115.751392859857TOTAL NCALL = 34NCALLS = 34
EDM = 2.6395486866473276e-09GOAL EDM = 1e-05\n", " UP = 1.0
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ValidValid ParamAccurate CovarPosDefMade PosDef
TrueTrueTrueTrueFalse
Hesse FailHasCovAbove EDMReach calllim
FalseTrueFalseFalse
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
+NameValueHesse ErrorMinos Error-Minos Error+Limit-Limit+Fixed?
0c0.001918930.00285086-55No
1sx1.994820.0054207313No
2sy0.9990010.002235910.53No
\n", "
\n",
       "\n",
       "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAJtCAYAAABDpcZWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd5hU5fnG8e87u8vS+wJSdlaxxWA0CbZoYomiYscSsRMTTGJNTDCaYotGTazRnxFr1KiJir0rauwCxqgYoyi7FOll6bDl/f1xBpnzDOxh2N05szP357r2Yqc/U3n2zH2e13nvEREREZHCloi7ABERERFpfWr6RERERIqAmj4RERGRIqCmT0RERKQIqOkTERERKQKlcRfQlN69e/uqqqq4yxARkTw3adKk+d77irjrEMlned30VVVVMXHixLjLEBGRPOecq4m7BpF8p693RURERIqAmj4RERGRIqCmT0RERKQIqOkTERERKQJq+kRERESKgJo+ERERkSKgpk9ERESkCKjpE8lDVVVVOOdwzqEB5SIi0hLyejizSLGqqanBew+Acy7makREpBBoS5+IiIhIEVDTJyIiIlIE1PSJiIiIFAE1fSIiIiJFQE2fiIiISBFQ0ydSYNLHvWjki4iIrKWmT6SNs00egPf+qx9ATaCIiETP6XPODQLuBvoCHhjrvb/eOdcT+AdQBVQDx3jvF7ngf53rgeHACuAU7/17qes6Gfht6qr/4L3/W8veHZG2qaqqipqamq8O9++/B089BV98AXA1J50EixfDkiXgHCQSUF4OvXtDTc1ZXH31L9hmG9hmG9hii/B1V1dXhw5r7p+ISHFya7cEbPAMzm0GbOa9f8851wWYBBwOnAIs9N5f4Zz7NdDDe3+ec244cCZB07cLcL33fpdUkzgRGErQPE4Cvu29X7Sh2x46dKifOHFis++kSD5rbISSkp24+OIJvPUWTJgACxakn2M5VVWd6N4dunZdd5mVK2H+fKipWQ50+urc3brBrrvC7rvD3nvDbrtBScm6a3POEfW+F2lrnHOTvPdD465DJJ9FNn0ZF3DuMeDG1M9e3vtZqcbwFe/9Ns65W1K/3586//+Avdb+eO9PSx0fOt/6qOmTQtXQAC+/DPfdB089BXPnBlvwhgyBnXaCnXeG7beHwYOhX7+mmzTnHPPne/73P/jkE3j3XXjzTfjoI/A+2Bp48MEwYgQceCCUlanpk8Kjpk8kWlbLsDnnqoBvAu8Afb33s1InzSb4+hdgADA97WIzUsdt6Hh7G6OB0QCVlZXZlCeSt9Z9fVsFjKak5GQaGvrTrRsMHw733388c+f+nd69s7muQDKZpFcv+M53gp8f/jA4fvFieP55eOwxePRRuOsu6NcP4Ao+/RS23rrF76aIiOSxjd6RwznXGXgYOMd7vyT9NB9sNmiRTQfe+7He+6He+6EVFRUtcZUisaup6cfRR3sSiamUlJxPQ8N7/POfMHt2sLUP7tuohi+4rprQjho2s7dW9+5wzDHw978HWxIfeyzYggjnss02cNhh8MYbLXP/REQk/21U0+ecKyNo+P7uvR+XOnpO6mvdtbm/uanjZwKD0i4+MHXcho4XKVhvvQX77APwNi+8AL/6FQQ92iEcfTS0bx99HclkMrT3bTKZzLqOsjI49NCg8YOBXHghvP467LFHkP17+eWsr1JERNqYyKYvtTfu7cB/vffXpJ30OHBy6veTgcfSjj/JBXYFalNfAz8HDHPO9XDO9QCGpY4TKTgffRQ0Wd/5DkyeDPBzpk+HK66AgQOzu67q6uqN2rK38eZw0UUwbRrccEPw7z77BHm/999v5lWLiEje2pgtfbsDJwL7OOfeT/0MB64A9nPOfQbsmzoM8DTwBTAFuBX4GYD3fiFwKTAh9XNJ6jiRglFbC+ecAzvuCK+9BpdfDp9/DnAdnTvHXV1Yp05w5pnw6afwpz/BO+/AN78JP/6x3XtYREQKQdZ77+aS9t6VtsJ7uOceGDMmyM+ddhpcdhn07BmcbsekrG9njOZvwds4GxrZsngx/OEPcN11QR7wqqvglFOCmYAi+U5774pE08e5yCYIr4IxkI4dX+Xkk6GqKpizd/PN6xq+9Wn5r2w3ns0Irl2ho3t3+POf4d//hm23hVNPhb32ggEDvqcVPURECoCaPpFNUFNTQ2Oj5847Pd26zWDVqqHceGMwH+/b385cGm1Tdr5oLbbhTN/iCMF8wH/9C26/HT74AL788mluucXT2Lj+84uISNugpk9kk/TgiCNg1KigSYIdOP30dV+FbuxYlXyVSATz/j78EOBtTjstGPA8e3bclYmIyKZS0yeyEcJb7nahpOQDnn46+Dr0lVcAPo+5wtYxaBDAMG64AcaPD3b0gO/FW5SIiGwSNX0iG2Ht17nXXuspK3uHgQMH8vrrcO654XVtC5PnzDODrGK3bgDj+eMfg/V/RUSk7VDTJ7JROnLMMfDznwfz7N57b+3qFoGWGKAclw3t2GENGRI0fvAgF1wQrOhRW5vLSkVEpDnU9IlEmD4d4HXGjQvGmDz6aOaeuXHujdtctnZggw1sly5QWflr4HSefLKO7t0/ZsAAfd0rItIWqOkTWY91Gb5dqaycjXODefLJYBk15+KurnVFNbA1NdV4fxMvv1xGz57bMXv2Yzi3p0a6iIjkOTV9IutRU1PD3//uKS9/m8GD+/HRR1058MC4q8ove+0VrOKx9dY9KC19lVtv1UgXEZF8pqZPhMy5et27/4Hjj4dddw0am+22i7vC/LTllvDWW/D97wfLt114IVRWblxGUEREcktNnwjr5uo1NHjOPdezePFvOOYYeO456NUr7uryW/fu8OSTwVy/Sy6BAw6opr5+w8OfRUQkHqVxFyCSL+rqgsbl3nvhjDPg+uu17uzGKi2F226Dvn3hj3+EefPgvvugffu4KxMRkbXU9IkA0IFDD4Vnn4XLLoPzzy/8HTZamnNw+eXQrx+cfTbsvz888UTcVYmIyFpq+qQoVVVVpX3t2Iny8vE8/zzceiv86EexltbmnXUW9OkDJ54Iw4YBdIu7JBERQU2fFKm1Gb4lS2D4cHj7bbjnHjjuuLgrKwzHHgsdOsDRRwO8yMKFmbMNRUQkt5RYkqJVWxt8BfnOO3D//Wr4WtphhwWDrGEIe+8d5PxERCQ+avqkSHVn331h0iT45z/XbpGSljZ8OPTp8yM++GAFffpMxrl+GuEiIhITNX1SdBYvBniRDz6AcePgiCPirqiwzZlzLy+/3JGOHb/OkCGzqalZFndJIiJFSU2fFJVly4KtT7A9jz4KBx8cd0XFYa+9gj15p0wBeD7VeIuISC6p6ZOisXIlHHoovPsuwA+0rFqO7bNPsGUVhnDggbB0adwViYgUFzV9UhTWrIGjjoJXXoG77gJ4NN6CilTQaP+ACROCrawrVsRdkYhI8VDTJwWvvh569Hiap58G70dz4omOZDIZd1lF7FHuvRdeew0OPxxWr467HhGR4qCmTwpaYyOceiqsWDGca68F78fivae6ujru0orascfC7bfDCy8EQ5wbGuKuSESk8Knpk4I2ZgzcfTfA7zjnnLirEYBkMolzjh/+0AHn8uCDwSoe3sddmYhIYVPTJwXrmmvg6qvhjDMA/hB3OZJSXV2N9z71czVwFf/3f3DppXFXJiJS2NT0SUG6/34499xg543rrou7GmnaeZx8Mlx4Ifz1r3HXIiJSuLT2rhScF1+Ek0+GPfcM1tMtKYm7Ioly660wfz787GdQUQFHHhl3RSIihUdb+qSg/PvfwQob224brPvavn3cFcnGKCsLlsPbbbdgDeRXX427IhGRwqOmTwrGF18Ec+B69oRnnoHu3eOuSLLRsWOwascWWwSN+yefxF2RiEhhUdMnBWHQoB0ZPPhT5sxZyLRpX2P33aviLkk2Qc+e8PTTwZa/4cNh7ty4KxIRKRyRTZ9z7g7n3Fzn3Edpx13knJvpnHs/9TM87bTznXNTnHP/c87tn3b8Aanjpjjnft3yd0WKSVVVFc651E858+bdQnn51rz+ek+8/y9A2ukaxpzP1o5wWfuzxRaOuXN3ZurUFfTt+zaVldvGXaKISEHYmC19dwEHrOf4a733O6Z+ngZwzm0HHAt8PXWZ/3POlTjnSoCbgAOB7YCRqfOKbJKamhq89zQ2ek48cTWrV+/CnXfC7rsHp4fHgmgYcz6zz1Xw8y7jxnXEuV2ZPv1yDW8WEWkBkU2f9/5fwMKNvL7DgAe896u991OBKcDOqZ8p3vsvvPdrgAdS5xVplssuC/bQveQSGDky7mqkJR1xRDBrEUYwZkzc1YiItH3NyfSd4Zz7IPX1b4/UcQOA6WnnmZE6bkPHi2yyBx6A3/0uWMbrt7+NuxppDWefDV263Mk114BzZ+Cco6qqKu6yRETapE1t+m4GBgM7ArOAq1uqIOfcaOfcROfcxHnz5rXU1UrB2Y1TToHvfjeY8eZc3PVIa3AOFi0axSGHQCJxI0895ampqYm7LBGRNmmTmj7v/RzvfYP3vhG4leDrW4CZwKC0sw5MHbeh49d33WO990O990MrKio2pTwpcF98AfAogwbBI49AeXncFUlrKikJVljZYQc49lgIYsEiIpKtTWr6nHObpR08Ali7Z+/jwLHOuXLn3ObAVsC7wARgK+fc5s65dgQ7ezy+6WVLsVq8GA46CKCUp56CXr3irkhyoVMneOyxYJYfPMH8+XFXJCLS9mzMyJb7gbeAbZxzM5xzpwJXOec+dM59AOwN/BzAez8Z+CfwMfAscHpqi2A9cAbwHPBf4J+p84pstLq6YC3dzz8HOIKtt467IsmlQYOCxg/6c+SRsGZN3BWJiLQtznsfdw0bNHToUD9x4sS4y5A8ccYZcNNNcOedMGqUI59fu9J6nDsOuI8f/QjGjlWeUwLOuUne+6Fx1yGSz7Qih7QJY8cGDd+558Ipp8RdjcQpmXwTuIzbboNE4hztzSsispHU9Enee+01OO20OuAZrr66RCtsFLnq6moaGn7DEUdAInEdK1fuFVrRQ02giMj6qemTvFZTA0ceCfAFixYdiPcNWmFDSCTg7rth++1h1aq7+Pjjdat5aKSLiMj6qemTvBSsrduJqqr3mTdvMf37/5Tu3eOuSvJJ587w+OPQoQMccggsWBB3RSIi+U1Nn+SlmpoajjpqOc7tyNNPd2fmzPFxlyR5qLIymNU4fTocfXSwh7eIiKyfmj7JU7/loYfgqqvgwAPjrkXy2W67wW23wcsvwy9/GXc1IiL5qzTuAkSsRx4BuJQTTgj21hWJcuKJ8O9/w7XXApwSczUiIvlJW/okr3z4YfAfOLyrGWySlauugn33Bfgrb78ddzUiIvlHTZ/kjfnz4bDDoGtXgCPo0CHuiqQtKS2Ff/wDYAYjRsCXX8ZdkYhIflHTJ3mhri4I4n/55dqvd/U/tmSvZ0+Aw1iyBEaMgFWr4q5IRCR/qOmTvNCr19945RVYvfokdt1Vw5dl0yWTy1i+fATvvAMdOtxJMlkVd0kiInlBTZ/EbuxYWLr0ZM49F7y/W8OXpVmqq6vxfhy//z3AKKZNOzTukkRE8oKaPonVa6/B6acDPMOVV8ZdjRSSCy8MMqJwDeM15lFERE2fxGf6dDjqKNh8c4CRlJTEXZEUkrVLtcGnHHMMTJ0ad0UiIvFS0yexWLECDj8cVq6Exx4DqI27JClAwZ7gh9HQELzeli+PuyIRkfio6ZOc8x4qKh7lvfcaWbr0ELbbTjtuSGuawgMPwEcfwahRwetPRKQYqemTnLv6alix4nD+8IcE3j+hHTek1e2/P1xxBTz4IPzxj3FXIyISDzV9klPPPQfnnQfwIBdcEHc1UgySySTOOcaMccB9/OY3jTz5ZNxViYjknpo+yZkpU+DYY2HIEIBRWmJNciIY4eLx3rN8+XG0azeZQw5ZgnPb4pyjqqoq7hJFRHJCTZ/kxJIlcOihUFICjz4KoES95F7HjvDZZ9tTUdGVrbf+hEWLPDU1NXGXJSKSE2r6pNU1NsKJJ8Knn8I//7l2RItIPCor4eGH4Ysv4LjjoLJyc5xzX/1oy5+IFCo1fdLqLr4YHn8crrkG9tkn7mpE4Lvfhb/8BZ55Bo499ouvvv71Xlv+RKRwlcZdgBS2cePgkkvglFPgzDPjrkZknZ/8BP7zH7jqKth+ezjhhLgrEhFpXdrSJ63mww/hpJNgl11g/PhtSCTWfYWmuXySD66/HvbcE370I5gwIe5qRERal5o+aRULFgTrnnbtGmztmzbt09BXaJrLJ/mgXbtgdl+/fsGKHbNmxV2RiEjrUdMnLa6+HgYOfJ2pU1cza9auDBigLXuSvyoqgsxpbS0ccQRAedwliYi0CjV90uLGjIFVq/bgjjvK8f5tbdmTvPeNb8Ddd8M77wDcoqXaRKQgqemTFnX33XDttQA3MGpU3NWIbLwRI+CiiwBOTr2GRUQKi5o+aTHvvgujR8PeewOcG3c5Iln73e8AHuJXvwqWDBQRKSRq+qRFDBy4K7vsMovVq6fy8su9SSYHxF2SSNYSCYBTGDIEfvCDYKC4iEihUNMnzbZ8OcyceROdO2/Ghx9ujvfzleGTNmw5jz0GZWXB0oG1tXHXIyLSMiKbPufcHc65uc65j9KO6+mce8E591nq3x6p451z7gbn3BTn3AfOuW+lXebk1Pk/c86d3Dp3R3KtsTEYvAzf5P77YciQmAsSaQFVVcFSbZ9/DiNHQkND3BWJiDTfxmzpuws4wBz3a+Al7/1WwEupwwAHAlulfkYDN0PQJAIXArsAOwMXrm0UpW27+GJ46CGAMRx8cNzViDRfMpnEOceeezrq60/jmWfg/PPjrkpEpPkimz7v/b+Ahebow4C/pX7/G3B42vF3+8DbQHfn3GbA/sAL3vuF3vtFwAtkNpLShlRVVeHcsVxyCcAdVFY+FHdJIi2iuro6bZD4LcD/8ac/wb33xl2ZiEjzbGqmr6/3fu3s+tlA39TvA4DpaeebkTpuQ8dLG1VT04f27R9gjz1g1aofUlNTHXdJIq3kbPbaK1iq7c03465FRGTTNXtHDu+9B1pslKlzbrRzbqJzbuK8efNa6mqlBc2cCfAoffsGuadyLWAgBa2ehx6CQYOCpdqmTo27HhGRTbOpTd+c1Ne2pP6dmzp+JjAo7XwDU8dt6PgM3vux3vuh3vuhFRUVm1ietJYVK4I1daELTzwBffrEXZFI6+vVC558Eurq4OCDtUeviLRNm9r0PQ6s3QP3ZOCxtONPSu3FuytQm/oa+DlgmHOuR2oHjmGp46QN8T7YU/e99wCOY/vtYy5IJIe22QbGjQtm9x19dNAAioi0JRszsuV+4C1gG+fcDOfcqcAVwH7Ouc+AfVOHAZ4GvgCmALcCPwPw3i8ELgUmpH4uSR0nbURVVRWJxB948EHwfgzJ5IdxlySSE2v35nXOsc8+jvr6UbzwArRrdzPJZFXc5YmIbDTn83hl8aFDh/qJEyfGXYYAzv0QuINTT4VbbwXn4q5IJD6//jVceSXAOXh/XdzlCOCcm+S9Hxp3HSL5TCtySKQXXwS4hf32g5tvVsMncvnlMGIEwDU88UTc1YiIbBw1fdKkyZPhyCMBPuHBB4OlqUSKXSIB99wDMImRI+H99+OuSEQkmpo+2aDZs2H4cOjYEeAgunWLuyKR/BG8Lw6lR49gj94vv4y7IhGRpqnpk/VavhwOOQTmzw9GVYRna4tIYDZPPhmMcBk+HJYsibseEZENU9MnXwmWVnM4V0JFxfNMmgT33w/f/nbclYnkp2QyyY47OpYt25///KeOvn1fY82auKsSEVk/NX3ylZqaGrz3nHNOAytXDuO66+DQQ+OuSiR/rVun9znuuquMVau+y6mnBjMtRUTyjZo+Cbn6arjuOoDrOeusuKsRaTtOPhm6d/8T994LicQfcc5RVVUVd1kiIl9R0ydpjueXvwxWG4BfxF2MSJuzcOGvOO00gPO58UZPTU1N3CWJiHylNO4CJD889xzAney9dzCK4t13B+HSBvIlk8nYahNpK5yDG2+EWbPgzDMBDo+7JBGRr2hLnzBhwtpZfJN55BEoL0/PKgU/1dXVMVcp0jaUlgY7QO2yC8B9vPFG3BWJiATU9BW5Tz8NRk1UVAAcqFl8Ii2gY0dSK3VM55BD4OOP465IRERNX1GbNQv23z/4Pfh6d3ac5YgUlN69AQ6gvBz22w+mTo27IhEpdmr6itTixZBMfkx19TLmz9+JbbZxyu2JtLBkspHZs7fnyy8XssUWUxg4cKe4SxKRIqamrwgtWwYHHgh1dVvy3HOd8X6CcnsirSDIxn7IW2/1pFOnLZk583YWLoy7KhEpVmr6isyqVXDYYcHOG/ADhg2LuyKRwrfrrvDoowDbcNBBwR9eIiK5pqaviNTVwTHHwPjxcOedAI/GXZJI0dh3X4CRvPsujBgBq1fHXZGIFBs1fUWioQG6d388tUfhTznpJGX4RHItmXyPxsZTeOEFaN/+YZLJwXGXJCJFRE1fEfAefvITWLHiUK68Ery/WRk+kRgEGb+7UksdHsm0aZfS0BB3VSJSLNT0FTjv4eyz4bbbAC5lzJi4KxKRs8+GK64AOI5TTkGNn4jkhJq+Ara24fvLX+AXvwD4fdwliUjKeecBXMC998Kpp0JjY9wViUihU9NXoGzD9+c/x12RiGT6IxdfDH/7G4wercZPRFqXmr4ClN7wwdVcc40jkdCOGyL5JplMcuGFDriY22+HkpJbcC6Bcw7nHFVVVXGXKCIFRE1fgbENX2PjuXjvteOGSB4KduzwNDZeyAUXAJzGaac10tAQvGdramriLlFECoiavgKSmeH7Jc7FXZWIRHEO/vAHOP98uOUWOOUUqK+PuyoRKTSlcRcgLaOhIcgE3XHHugzfNdfEXZWIbCzn4PLLoVMn+O1vYcUKgLK4yxKRAqKmrwCsWQMnnAAPPgi//z1cdBHawifSRv3mN0Hj9/OfAzzCypXQoUPcVYlIIdDXu23cihVw+OFBw/fnP8PFF6vhE2nrzjkn+JoXDtRavSLSYtT0tWGVlUPo1OlVnnmmERjNL3/pvtrrzzntrSvSlo0eDXAS//oXDBsGixbFXZGItHVq+tqoefNg+vQ7KS3dk/vuS+D92K/20tXeuiKFIZl8nYaGEbz11mp69vwI5waF/rDTSBcRyYaavjbo88/hO98BGMK4cTByZNwViUhrCEa6jGP8+HK6dh3CgAHT+eijdX/YaaSLiGRDTV8b8+67sNtusHAhwPc55JC4KxKR1rb33vCvfwUrduyxB7z2WtwViUhb1KymzzlX7Zz70Dn3vnNuYuq4ns65F5xzn6X+7ZE63jnnbnDOTXHOfeCc+1ZL3IFi8uSTsNde0LkzvPkmwFsxVyQiubLDDvDWW9C3L+y3H4wbF3dFItLWtMSWvr299zt674emDv8aeMl7vxXwUuowwIHAVqmf0cDNLXDbRWPsWDjkkAZWrpzI1Kl92XZb7aghUmySSXjjDfjmN+GoowDOwvu4qxKRtqI1vt49DPhb6ve/AYenHX+3D7wNdHfObdYKt19QGhpgzBg47TSA51i6dCjez9GOGiJFqlcveOmlYFQTXM9Pfwp1dXFXJSJtQXObPg8875yb5JwbnTqur/d+Vur32UDf1O8DgOlpl52ROi7EOTfaOTfROTdx3rx5zSyvbVuyBA47DP70J/jpTwEOpXPnuKsSkbh17AgPPQRwObfcAgccsDbnKyKyYc1t+vbw3n+L4Kvb051z30s/0XvvCRrDjea9H+u9H+q9H1pRUdHM8tquzz+H3r0/5amn6oGfcvPNjmRyYNxliUieSCQgmRwLnMj48avp1etTBgzYJ+6yRCSPNavp897PTP07F3gE2BmYs/Zr29S/c1NnnwkMSrv4wNRxYrz8Muy8M9TV9WL8+FK8v1lf54pIhmCkyz28/no5FRVb8+WXD/P883FXJSL5apObPudcJ+dcl7W/A8OAj4DHgZNTZzsZeCz1++PASam9eHcFatO+BhbAe/jLX4Lp+337AuzM3nvHXZWI5Lvddw/GOZWVzWb//Rtx7jc4l9DwZhEJac6Wvr7A6865/wDvAk95758FrgD2c859BuybOgzwNPAFMAW4FfhZM2674CxbBp07P8FZZ0F9/eP8979dSSYb4i5LRNqIqipYtOhrHHdcAriMgw9upKGhq1bwEJGvOJ/H+/sPHTrUT5w4Me4yWt3HH8ORR8InnzRwxRUl/OpXQV5HRCRb3sNNN8EvfgGDBsHDD8OOOwanOefI58/85nDOTUobHSYi66HWImb33x/k94I97/blvPPU8InIpnMOzjgDXn0VVq8OVvC54w40z09E1PTFZdky+NGP4Ljj4Fvfgn//G+CVmKsSkUKx227w3nvBOt2nnrp2je5ucZclIjFS0xeDCROCRu+OO+CCC4JBq/37x12ViBSaPn3g+efhssvWzvV7nzfeiLsqEYmLmr4camiAP/4x+Mt71apgNMtll0FZWdyViUihKikJ/rh84w0oLU2wxx4NOPd7nCvVjh0iRUZNX4588QV06vQ2F1wA9fX/YPr0Huy1lwvtWae1dEWkteyyCyxYUMnxx5cAl7DLLvXU1LSPuywRySE1fa2ssTGYvbf99rB69XbccQc0Nv4A7xfhvQ/9aPiyiLSmrl3h3nvhvvvgs88A3udPfwq+hRCRwqemrxV99hnstRecdRZ873sAX2fUqGDvOhGRuIwcCZMnAzzDmDHBcOdPPom7KhFpbWr6WkFdHfz5z7DDDvDhh3DnnfD00wAz4i5NRASAfv0ARny11W/HHeGSS4IxLyJSmNT0tbDXXgv2zP3VrwBeYPHi/owa5UgklNkTkfwzcmQwIP7ww+HCC6F9+//h3Pe1godIASqNu4BCMXcubLHFQyxffhRQDZxFnz4fUF39ZcyViYisXzKZxKXlTfr0OYGuXe9hypSXGDkS7r+/X4zViUhL05a+ZlqzBm64AbbZBpYvP5QLLoDly6vw/nHtmCEiea26ujq0M9mcOffw4YfBFr+HHwb4lCuvDEZMiUjbp6ZvE1Wd6mEAACAASURBVHkPjzwCX/86nH02DB0K8A0uuww6doy7OhGRTdO+PVx0EXz0EcDL/PrXsO228I9/aCk3kbZOTd8mmDAB9twTRoyAKVMmA8N58UVHMqk/h0WkMGy1FcDhvPQSdO8Oxx4bDJbXih4ibZeavix88EHQ6O28M/zvfwCnUVf3dbx/WnP2RKQg7bMPTJoULBs5YcIc9tgDnHsG53bSjh4ibYyavo3w0Udw9NHBCJZHHqkFLmLu3K4kk89Rql1hRKTAlZTAqFHQ0LAFV14JvXodCExg7txbcW6Hr1YVUhMokt/U9DXhgw+CrzS+8Q147jmAS1m4sBveX4T3S7RlT0QK2tq9e9ctFVnBmDHBspKXXgrl5fsB/2HECM+773pqamriLllEmqCmz/AeXnwR9t8/2LL3j38sw/vLWbq0F8nk7fToEXeFIiK5YffuXfuHbteu8NvfwtSp8LvfwfjxQewFxvPMM9rhQyRfqelLqauDv/89GKy8337wn/8AXMCCBZ3x/gK8X6AteyIiabp3D1bxmDYNrrkGYEuGDw++Hfnb3zTqRSTfFHXTV1VVhXOVOHcp7drN4oQT4P33PwZ+yJw55SST99GzZ9xViojkty5d4Oc/BxjM3XcHx51yCgwcCOedF3wdLCLxK8qmr6EhWAu3puYGEolpOPc7Dj54M556ChoatsP7O/B+tbbsiYhkIZnsz0knOT76yAH7snLlM1x9NWy5JQwfDk88AfX1cVcpUryKat/TyZPhnnuCr3FnzADYmfPPhx//GLQsrohI89g/lJ1zzJjhufVWuPVWOPRQ6NsXjj8eTjopyE2LSO44n8eJ26FDh/qJEyc26zpmzYIHHgiavX//G6AeeBb4G5WV71NT81kLVCoiIlZVVVXaHr2lVFScwne/eytPPBHkqL/xDTjxRDjmGKisbN5tOecmee+HNrtokQJWkE3f1KnBEmnjxsGbbwZ7kn372zBp0tnMmXM9ffq0QrEiItKkdU1gT+AHtGv3Y9as+SYQ7P175JHBz+DB2V+3mj6RaAXR9DU2BjP1nnoqWCQ82KIHZWUfU1f3APAg8AnJZFI5PRGRPBE0gWXAkamfnYDga98jjoC//vVQZs9+Egj+n2rqM1xNn0i0NpvpmzcPvva1s1mw4NvAMKBf6pQ3gXHAI/Tv35D6gLgkpipFRGRDMjOAVVx9dTUPPwwXXwzeP07v3sHc1AMOgBNPrIilTpFC0Wa29C1cCK+/Dv/6F7zyCrz3XvC1ba9ewVy9Aw6AYcNgs83irVlERDZNOAPYm169juOAA67nuedg/nyARnbYIcH3vgd77gnf+x5UpPpAbekTiZbXTd8WWwz1BxwwkddeC9a/DawG3gGep1+/D5gx43FKSuKrUUREWldjI0yaBPvtdzW1tTsA3wE6pk6dDLwKnK6mTyRCXjd9zg31MJ7gK9vX6Nv3U6qrH6R9+7grExGRuKxZAxMnBt/8vPpq8C3QsmXa0icSJc+bvo6+rm4FpW02eSgiIq2tvh7KytT0iUTJ8xU5VqrhExGRJun/CZGNk+dNn4iIiIi0hJw3fc65A5xz/3POTXHO/TrXty8iIiJSjHLa9DnnSoCbgAOB7YCRzrntclmDiIiISDHK9Za+nYEp3vsvvPdrgAeAw3Jcg4iIiEjRyXX8dQAwPe3wDGCX9DM450YDo1MHlznn/pej2jZFb2B+3EW0UXrsNp0eu+bR47fp8vmxS8ZdgEi+y7t9nrz3Y4GxcdexMZxzEzUiYNPosdt0euyaR4/fptNjJ9K25frr3ZnAoLTDA1PHiYiIiEgrynXTNwHYyjm3uXOuHXAs8HiOaxAREREpOjn9etd7X++cOwN4DigB7vDeT85lDS2sTXwNnaf02G06PXbNo8dv0+mxE2nD8noZNhERERFpGVqRQ0RERKQIqOkTERERKQJq+kRERESKgJo+ERERkSKgpk9ERESkCKjpExERESkCavpEREREioCaPhEREZEioKZPREREpAjkdBm2bLVz5b49neIuQ0RE8txSFs333ldsymVLS7v7HXfcsqVLEonFpEmTNvheyOumrz2d2MV9P+4yREQkz73oH6rZ1Ms2NHRj4sSJLVmOSGyccxt8L+jrXREREZEioKZPREREpAio6RMREREpAmr6RERERIqAmj4RESlyLu4CRHJCTZ+IiIhIEVDTJyIiIlIE1PSJiIiIFAE1fSIiIiJFQE2fiIiISBFQ0yciIiJSBNT0iYiIiBQBNX0iIiIiRUBNn4iIiEgRUNMnIiIiUgTU9ImIiIgUATV9IiIiIkVATZ+IiIhIESiNuwARaR5XUhI67BsaYqpERETymbb0iYiIiBQBNX0iIlLkXNwFiOSEmj4RERGRIqBMn0gbpwyfiIhsDG3pExERESkCavpEREREioCaPhEREZEioEyfFB07185SRk5ERAqRtvSJiIiIFAE1fSIiIiJFQE2fiIiISBFQpk+KTq4ze1obV9oCvU5FCp+29ImIiIgUATV9IiJS5LT2rhQHNX0iIiIiRSCWTJ9zrgSYCMz03h8cRw0iuZJvGUJlt2R99DoQKXxxbek7G/hvTLctIiIiUnRy3vQ55wYCBwG35fq2RURERIpVHFv6rgPGAI3rO9E5N9o5N9E5N7GO1bmtTEREikL6/zXakUOKRU6bPufcwcBc7/2kDZ3Hez/Wez/Uez+0jPIcVidSGHxDQ+gn6nRXUhL6aWmted2SnUS7dl/9FLv0/2virkUkV3K9pW934FDnXDXwALCPc+7eHNcgIiKSRlv6pDjktOnz3p/vvR/ova8CjgXGe+9PyGUNIiIiIsVIc/pERKTIaUufFIfY1t713r8CvBLX7UtuaTZc/mrt5yL9+m2WrHHNmla9bQnT4y1S3LSlT0REipy29ElxUNMnIiIiUgTU9ImISJHTlj4pDrFl+qS4tOUMX3PziMozrqNMmYhIfLSlT0REipy29ElxUNMnIiIiUgTU9ImISJHTlj4pDsr0NYOyWusU8mPR3PtSSI/Fxijk14IUKjV9Uhy0pU9ERIqcmj4pDmr6RESkyOm/QikOeqWLiEiR05Y+KQ5FnelrbvaoqfMXW64p1/evLT2+LT3nz4q6vkTHjqHDjStWZHX72crn58JqS68jaU1q+qQ4aEufiIgUOf1XKMVBr3QRESly2tInxUFNn4iIFLkEVVVVcRch0uqKOtNXTPmdQssu2foT7dpt8HR73qjHwl6XXS82KmOXreZm9qK0dIav0F5LEij257WmZkbcJYi0Om3pExERoX3cBYi0OjV9IiIidI67AJFWp6ZPRESKXv/+28ZdgkirK+pMX2vKtzxMVD0tPUsu1/c/m9uLOq/N8DXntjZGVOawubJ9buJ+LpvS0rXl032LmysvDx32rTzPMd888cQrcZcg0uq0pU9ERIrekiVxVyDS+tT0iYhI0Vu6NO4KRFqfmj4RESl6P/zhWXGXINLqlOkrUjYbFZWVijq9tbNR2Wa5sqmnufc96rG0GcGotXBzvjZvxFzCbLVmJrC51xX3OshxS6/f1trceY75nAXdGPPn18Vdgkir05Y+EREResVdgEirU9MnIiJFLdhIWRF3GSKtTk2fiIgUtdJSgD5xlyHS6oo609eWMiitXWtG7izLnFdL19eS15dt5q41a4HM7FRLz9GLur8Z9TTz/rd0JjAbzc1jNvf2sl2XOe7PmPTb18zDdUpLYfVqNX1S+LSlT0REilpZGWhLnxQDNX0iIlLUgq93+8ZdhkirU9MnIiJFLUgo9GHlyrgrEWldRZ3pa80MSq6zRtmKqifuDF/U6XadUOrrN3xZc97mZuqiROW8mjsHMNu1erPNCGYrm+tv6fue6/dNts+tFff7Pl9uO9+s/YiYNg222SbeWkRak7b0iYhIUVu7L1J1daxliLQ6NX0iIlLU1PRJsSjqr3ez1ZJfzTR3aayW/lqpuUuLRYn6ejbbJaB8Fue35832sWvpESQtvRRY1AiVlv56uzn129qyle1X2RmPjVkCz69endXt5Tr2kC37+Mb9dXhLas3HNnjY1jBmzO2cdtpPW+x6RfKNtvSJiEjR+9rX2rFkyWZxlyHSqtT0iYhI0RsyBGBI3GWItCo1fSIiUvSCpm8Lli+PuxKR1tOmMn1xj0HJZvmpll7SqNljPeyIk4gsU7ZZoGxvP9ssVZTWfO6zrSUqtxaZ5zS5swxmPE1kfeb8pRW9wyfPmx++/Yg8aVRurKk8aFQmLuqxi6olKoNn84xR96W543eyzRBGibr9XC6Bl2utnUcMmr4EW255CLNmPdGqtyUSF23pExGRoveNbwT/zp6tXJ8ULjV9IiJS9AYPht69AXaLuxSRVqOmT0REip5zsNtuoKZPClmbyvS1dqYj21xYU3me5i59le1SW5FMrivbuXxWVHYq8vqaef+zycVl5J4iZvxle98jn2ubZ8x2JmFU/tHmNY2M+1u7JHQwKteWUU9EtjW1ev260zutey7cqvB9sfetue+bqNehle28zKj7HvVai8r8ZTuvMnJmYxPXH/dMwShR2dLWsNtu8MQT2zJo0I5Mn/5+q9+eSK5pS5+IiAiwxx7BvzNmDI63EJFWoqZPREQE2HVX6NIFYP+4SxFpFWr6REREgLIy2HdfgAPwPu5qRFpem8r0RWnp2XjZnj89g9KS1wXNnxdmc1Y0Mx+Tbb1R2abIwzabtHRpk+dPz4pF5ZyyfiztYXPfMmYc2tlwwaaEdafb58LkL62oDJ/NyUW9FjLOHzHTMTILZg7XN5Ejs6Lm2tnXVdRzG5VlzVa2a/E2N/OXbb4y4/Qm8qDNnr3ZzLxklLhmDh5wADzySCUDBgzjyy+fj6UGkdaiLX0iIiIphx4KiQTMmrVH3KWItDg1fSIiIin9+sFeewEcq694peCo6RMREUkzciTA1rz3XtyViLSsvM/0ZTP7LteymSOVbT4mKs8SlWXKyEJFZepMjsvZ+2YydNnOF7M5tqjrs1yZmf2Wxe1nPNY252XXsrWPpX0ubE7KZOSczU/ajJ597rp0Dh1uXLQ4fHqW67dmM6sNoMQ+N1lmEF2T1YRfa9nOFCzp1zd8BvPYZMz5i5j7FzVTMOryUdnT1s4VNzeHF5pfmeXrKNvT27IRI+DHP17N3ns/wJIlJ8ddjkiL0ZY+ERGRND17woknlrN06RGYv09F2jQ1fSIiIsbppwN05Z574q5EpOWo6RMRETF23hlgItdfn5HIEGmz8j7T15q5kagZWlH5GJu7S7++qHlilj09KmeV7eOS7dq9draczWJFZvhsDi3i/FGZQ8u1NxnEpp47e112jp59XiO+z8nIP0bNK7OH7XO3YmXoYKJH99DhhvkLmr598zouregdvvzsOeHrt89NVD406rnu1jV8/oj1dZu67YzTl4SfC3tdNvNn85A2b5iRn1y6rMl6MjKARtS6ys3N4EWJyhja57Ih7bXd3DWmWzrPmG9rATsHvXvfzqefDqVfv7OYN++GWOsRaQna0iciIrIec+bczNe/DvPn/4TGxrirEWk+NX0iIiLrkUjA734HsB333x93NSLNp6ZPRERkA44+GmAi550Hy5fHXY1I8+R9pi8b2WZCmsrkre/yUXmfbDIoUXmahiznBGTMVovIImXUY++LnWVnslRRubCM85uMYqLc3J7JtWXkwOxzu6rpGWPpj19J93BGLiqblOjZI3S4cbnJaUXUZnNeif79wudfuSp8/fPmN12fvb6IXJpV0rtX6HBGRtDWbzKFbk3Ts/VINP23Y6j+iAyaFTUz0D52GcwcPvtYRWVTo9a8jkr4R804zHifZJkzzlhT28jmc6S564Vn+/nb3PXFcyWRgL59L2fmzHH07/8XamvPjKUOkZagLX0iIiJNmD17HMcfD0uW/JjPPou7GpFNp6ZPREQkwlVXAaxk1CiNcJG2S02fiIhIhP79Ac7ijTfgBk1vkTaqTWX6ojIezZ1xFZXxs5q6/WzzgVHztqLY7FAUO4vO28N2bqDJxVl2HlqjfS4yZuGFs1WJTmbtXftcR6xFbNe3Le3bZ91lTV4wg30dLG8651WyeTJ8/mkzmr5+k+Hz5voTZq5extq79rExbMYvI8dmrs9m/LD5ykW1ocOuR7emTzczEzOyr2kZQVtLlIz3hXks7OvY3jf73EetOxwlY6ZjxPVlzLu0a0zbdZmNjLWKzfmjsrxNfa5kzBiMWHfYaunP26jrz4eMX2Xla0yb9jjnnjuMffZpzw475LwEkWbRlj4REZGNUFNTzZw5h+L9Ao46Cmproy8jkk/U9ImIiGykPn0AfsDUqXDqqeDtkjsieUxNn4iISFbe4Mor4eGH4ZJL4q5FZOO1qUxftrKdA2VlmxkMXZ/JVdlMWnNm/GXcFpnZIbseamPtkvDpJltkc1n2/DY7lZEhNPWUVg5cT9VplpjZcmbWW8btbTs4dNitNlkoO/8sLXdmM2lutTlv73BeMbHczOGzE1ntXDzzXLuOHZqszfUNZ/hYaDJ8Zk4eHdqHD5eYv9UWh58rOoef24TNgZn63WqTAzOvBRIlTZ9uc2R2hmJa/QnMfbO5LnNfvX2d2PeRzdCZ59a+LiNf9yZvaedXZqzlazN6Rka+sVPT6xrbzJ99H0RlfzMuv9isRZx2/pbO8EXOFMxSPmT4NiSZTPLLXzrgDi66aBQXXXQicC/JZJLq6uqYqxPZMG3pExERyUJ1dTXee1avHsU++0BZ2T2MH++pqamJuzSRJqnpExER2QTt2gVf8W69NRxyCMBucZck0iQ1fSIiIpuoe3d44YW1c/yeYcKEuCsS2bCcZvqcc4OAu4G+gAfGeu+vb7Hrb+YcqKjri5J+fRnZn4h8YdRtZxy287uMqFlzGXPw6pqeF1YyYLPwETY7ZdcAtaebWXJ23prvGc4gljQ2hi8/d2H4sH08zfw3N7hy3YHZZm3bPj3D551vZsfZ+2Lzl6bWhD2/zdzZnNocU8/gcP4xMS9cj+9gcmVL7TrFJjNoM35mDl+i0eTQejY9g9FmDjPOb24vI9OYng/t1Cl8WtT7wNSOfV3YHFnfivDpdkbiEjOP0rzubYYvcukFO2cvas1re38z1gY2WVa7xnVEDs9mBO3cwKbWGo6a2xc1t9R+pkWuvWvzhxHrIOezzTaD8eNh881r2XnnRmAYyeQ85fsk7+R6S189cK73fjtgV+B059x2Oa5BRESkRQ0cCJ99VskWW/SgU6cJ1NRsGXdJIhly2vR572d5799L/b4U+C8wIJc1iIiItIaqKnj9ddhiC4CneOihmAsSMWLL9DnnqoBvAu/EVYOIiEhL2mwzePVVgIkccwxce60GOEv+iGVOn3OuM/AwcI73fok5bTQwGqA9Tc/Aslo6o5exFm9EvqapzEvUWrZRa8tmzuMK56bsGqMZ67WaLJVfbNYPstkok+9pnD23yfrs+rEZOTO7xKnJQvnPp4XPb+s3c/wyZtGVlYVPrzXz3dJva2p4rVxn8oY2s+fNbTtbe3eTV1wazibV9ww/9qUmZ8Yq89zbx26Nub1O4efGlYYzihm5MTNnr7F/n/DJy009ZkZjRk5tmcledQ8/XjZH19Cvx1e/lyw0Mw/t82pqtXlEGsKZPmfyko1fzg6fbmuPWst3XjhvaeddRrHv44xZczZDGDFnr8GuLWw+N+xf7RlZ3yw+86IydVG1RuYzbebaziiMmMsX+fnddCw5s560/2sqKysjzp2dHj1g0KBTmT79cn7xixFMngz/93/RkU+R1pbzLX3OuTKChu/v3vtx9nTv/Vjv/VDv/dAymt5ZQUREZFOk/19TUVERfYEsTZv2CQ0NI4BLuf122HdfmDevxW9GJCs5bfqccw64Hfiv9/6aXN62iIhILgUbsn/PfffBhAnwrW/BG2/EXZUUs1xv6dsdOBHYxzn3fupneI5rEBERyZmRI+HNN6G8HPbcE666KnP6kEgu5DTT571/ncwRdhvknAvl5LJdOzfj9u06mBGz8zLW1bQzuYxQxsXmC22exWZ1evagKTYLFLXGqF071y9cFK7VZH8y1gS12SO7Zmn38Hq2rAxnCl3vcM7Mzw/P2XNdwzm4RLk5/6Jw5tD1Mrk1myszGT8/J23tXbPWbeOWZofxNRHzxGrNbdlMns342bV8V9SFT+8SrnXVwPBj2cHMJFw1KHx97aeEvyOqGxh+7TSWNf2+KP94evgIm8mzs/SMxm7h0xNmDmLGTMaGtBR7vZkrZx4rZ9Y9buxhZiLa/KN5HSTM6y5j3WI7w9C+5+26xzbvaV7HGRlBe9i+D+zr2mZzzfvaztlzZWaun/2csZ9xZm3h9Pe9zSRHZeoyPn8jMndRa5dHfX5nfXqWmb5cSSaTBF9yAXQFbuO8847mooteoqbm+7TCN8siG6QVOURERFrJ2nV6g59aGhuP5sYbYeXKPRgyBB5/PO4KpZio6RMREckR5+D00wGG0r8/HHYYjBoFtbVRlxRpPjV9IiIiOfcR77wDv/kN3H03fOMb8OyzcdckhS6WOX0by3sfypFEZTyyndMXlfGLyrxkrFWZVmvGZcvtbLXwQ5+x9q3Nv9j1TG0K2NRu1yy1c/xc13BWyK5JamWcf4HJ6NnM3dLwnLzMuXsReczK8Fq/DXY2XUN42qnN3aVnBhvbhx+LkiXhx6K+h5mN1j783LRfFs7w1W0ennNXuih8296uxVsa/tuq3mT6SpeHM38rhm4eOrymq8lrloVv35mXQof/hWcq2szfmm3CmcZ200xOrTw889DOGbSPn13LuKFz+LkqTZ/NZ657xebhDF27xeHcWNlsk8Ezr6vGgWbm4AwzT9Jm+uxzY3O6HUzGzmZRbWbQsnlP8zp37e36tiajaN/39n21PDznsKR3r9DhRvP4+FVmrd60z6WEyQtmzBiMyjDbWZ5Zrvsb9XmdcXtZrq2e75LJJOXla7N+uzBt2l0ceOC2wP0MHHgN06dPiLM8KVDa0iciIpJj4azf26xatS0XXwzt2o1kxowXuOUW7eErLU9Nn4iISMzKy+H3v4cPPgB4j5/8BPbYA95/P+7KpJCo6RMREckT22wDlZU/BE7irbfm8c1vNuLcrTjXl6qqqrjLkzYurzN9VtScJ5shicrVZaz9aNetNJe3eaCmrt/mZWzGzmpctLjpWm1GzuYLzRqmGfPPFjf9VGdkhyw7h89mDC2TjbKXt+vVNnQNn79kWfixre9kcnmrwnmjxorw4x2ajWcydQ2m9pKVTWeXGro1ff6M2m1m0GT47Bw9Z9aTTdSF84pdpoZzXDZz2NDBzG4zc/Rs5tDWu6bSZPLM9bX/Mpz3tHMFbSaxvlM4t1c6c8FXv/tu4ee9w6xwbXVdw6/7Nf3Dt9WuOpzj8iXhsZ/Ld6oKHe707/A6y5SYv3NLzPvSZOYysqjm8hnrKi8Mn944/cvQ4YSdYWgygnbtYEx21n7m2M+kjNyz/YxMywDaz5SMWZ02Dxgxd8+KWlvXyjg9Kn9p5emcvk1RU1MNwKJFcOml8Je//JgOHX5MTc0YVq8OtgqKbApt6RMREclDPXrANdfA5MnBSh5wFdttBw8/DN5HXVokk5o+ERGRPLb11vDEEwDD6NABjjoKdt0VXnop7sqkrVHTJyIi0gYkk58yeXIp8EPefXca++4Lzr2IczvjnFPmTyLlfaYvPecRNacpKkOS7VqTlr28XZs3PeeWkdEza2bavExi88omb9uZNUMz5nuZffudWb/Vziuz679iMoFuaTiXhs0ktms6o9hgZ7stNHmdmeF5aiWE5615M1svURd+buq6hk8vnx3OYqXn+GxOzGbobAatsSycE2sws9XaLQ6Hh9Z0Dz+37UzmbkW/8PW3Xxi+Lysrwvelwzyzlq/JkWVk+Ey9C78ZzsGV14bvb4fZ4Vlyibrw6b4kfHj5FuHr8+ZPxXaLwvennVnLePXgvl/9brOYNpNXutysPVsbfh029AvPHLT5xvIF4fdVw4DwHDubDW03N5xXtK+NRruOsllnuKSd+Qg179PEoP6hw35O+PIuHEUl0b9f+Ajz3Pup08KXt9nevuGFXP2c8DrN9nMpdN4mZvptjIxMtGE/n+3nZ8btZbm2bzGorq7+6vdVq+Cvf4XLLtuX+fP35Ygj4JFHtouvOGkTtKVPRESkjWnfHs45B774Ai6+GF58EeAjjjlm7dgXkUxq+kRERNqoLl2C+X5ffAFwBc8+CzvsAEccAZMmxV2d5Bs1fSIiIm1c796QTI5l6dKewEU8+ugihg4F557CuV1xzin3J/mf6UvPbdjMiO1YM9bCjZhplcHMgcqclRfO/zSVeUn0CGeBMuZpmfN7kw1yC82ao3a+l8kCZaz5WRbOkdn1V+3sNrfSZARLTX6yUzijl1hlzr86PKstsTJ82GaTVu2yVfj27Vq6JhfmGsOn29lwaypMPigtK2bn6tnLLq4M5x3bLzC5s0T42arvZHJUZqmkjIzf0vAZGtqHH4vSleH7Vrt5+LnrMiN8+6u72zl/4cu3XxS+vaUDzKy2VU3nMUtWhS9vc3J1XcL1Ldg+/GLsNGfDA9PsY1O6Inxb9h3qTTY0NH8RaJc2AxBg5ZDwusKJNeb6TWbQrrtcYrOkZt1lu86wt1lYwuy6z4m+vcNnMO+bxrnhDJ7N+EV9rtjPAdcjnMd0aafbDJ+d6ZexNrnNMJv1uBvnhfOKUTME7edn1BxWe30ZWyyyiyAWpPTMX20t3HgjXHvtQSxYcBD77gvnnQf77WdfpVJMtKVPRESkwHTrBr/5DVRXw1VXwYcfwn77AbzH3/8OdXURVyAFSU2fiIhIgercGX71q6D5u+02gPaccAIMHhwMfl6yJOIKpKCo6RMRESlw7dvDqadCZeVw4CCmT3+Fc8+Fbt1qce4qnBug3F8RyPtMXyjXYddeNBmPBpO5D/bu4gAAIABJREFUsxJZrlNpMyelfcOz5DLWw02b52bn6HkzHytREc72+M/N/C2T4bNrcib6hOdx2QyfzeSVTQ3PxbN8z67hwyarlFgezgrZNVHruoZvv2xJ+LsDO5/N5tBszq2uS7j+uk7h08sXm7yRWa82fZacnWu3cLvw2rMd54VzXysrwufvaDJqyzcLn95hfriWklXhWuz5V/YKZ2r6vxZ+3dZWhbNSy/uatXAXm1ly5l28qkf4sbIZPzsbb1XP8GO9qkf49C4zwpev62TmGJrxbPa5snME09nnbWXfcL6ydEX4sS03c/Tm75cMHbb3tXx+eM7fqj7h577dYjPrs134sUiY27Ps+8Jm/uy6z94e7mzWjC4372OT+cu4fsPVhj+T/KLa8Olps0Tt+tn2M8tm+DKYz+OMTJ45e1RmL+pwtnMDZf1qaqZ+9fuECXD11d148MExJBJjGDkSzjoLdtpJub9CpS19IiIiRWinneCBB2DKFPjZz+CRR4Lj4E3uuw/M+gdSANT0iYiIFLHNN4frr4eZM4N/oRfHHw/JJFx0EcyaFXOB0mLU9ImIiAhduwZf71ZW7g8cwOzZT3HxxdC//xqcu4/NNhuB95FXI3ks7zN96TmQjLlR5rw2A2IzKRlrP/YOr8vZMD8886ukZ3i2XUbmxczM8kvSslk2nxKRj0n0NvO/zNq4CbO2bsb+9mYOHmbOXcbpZp6XnRNoc1/1HcPZI5vhsxk9e3ppbTiP025R+PZtlsquh2tn5Vk2N7e627rzd6s2WSLz0Mz9Vvix6Tw9fLrNvDWYjNoyc9sdTcavrmP4/J2/NLm0HcKP7ZpwXJJys1xqfYfw9WXMASwPn1472OQz68xavuEYHSXhtwnLNgufv8vM8P1rv9BkGE0GsUPaWsOdP10UOq2uV3gOn+sU8To0a+favKW1rCqcje00PbxGs33dWo2d2jd5uu9mZtetMfXUm/etycpmrKPcLvx4lJo5hBlZ21qz5rRZEztjLd75Zk3u9NPs2uURa+n6FeG8pP28bFwevr4Su9auuT2b0Y7K8GXU1/RLQbKQnvv77DO46aZ23HnnccyefRw77QRnngnHHAMdOjRxJZKXtKVPRERE1murreC664KvfuFnrFgBp5wCAwbAz38On3wSc4GSFTV9IiIi0qTOnQFuZvJkeOmlYNDzTTfB174Ge+0F998P2sE6/+X917siIiISv2QySSIUtekDjOLVV0fz6qtbAPOAO4GxJJP1oWXhJD/kfdOXntOzGT2b+YjM8GVc3mT0uoSzVXZtyvQ5fACNZvaeS8vTuHKzvqldI9PO1TMZPbfYzNsy87kyTu/SdGbQmzVAnVk712bo7Fq39nQ738xm7hZvFQ57lC8IX35Vn3BWqr5905k9b7ZJJ+rNrLnu4cNlaVGnFb3tzL/wdZWbmNMqszzqyr5mfVWTCUyYeGX5koj7kpGXDJ+emSkMH+4YXp6V6fuFD5fVhq+/sSz8XHaptqeHL9/OjLssrw3n0tZ0CT8eq7ua+2NyPo1l6x7/5Wbt2c6zwg+mvW67LnFDefh0m2/sNDP8uixbGn5yVm4WfrBLl5t84n+/DN/egHDu160On99m8pzJpja0D59ettDk4JaG63U2u2syeonZTa9vm5H1teuJd08LjK4M1+K6mtmgJv+X6GReqB3C72G/JPyZZHkz/8PmnG3Gz34eNyw2s07tnFVpdRtq4hob4cUX4ZZbKnjssTE0NIyhpuYFHnoIDjss8787iY++3hUREZFNlkjAsGHw8MMwbRpceinA1hx9NAwaBBdcAFOnRl2L5IKaPhEREWkR/fvDb38LsAVPPQW77AJXXhms9XvggfDoo5kbpCV38v7rXREREWlbkslBHHTQ2vjFQOBUnn32Rzz77EBgFkH273aSyQZl/3Ior5s+51zm+rjpp0fMkbKi1n60mZOEWf/Wysi4pM/Qstkcu25wZ3NZu+bmsnC+xdsZVr3DMwLtGp8Z88GM+h5mvpjJ8Nn5ZaXLw3+araoIP/bt54Xzj53M/DSbbSpZZXNi4dNtlsvOilsVHgmWkUvzaU+tnZtXYubULa0M58JKwlEnVvYN11KyKnx+Zx5qu/btGvNUrenedKZuWTJ8e12nhM+/osLcfoOp3yyd1HGWmdu3bbjgnv8xGT1T7+qe5v6Eo1b4kqZn3ZUtX3f7ZSvs8xp+D5aadYvXdDF5QZP9tHnDZYPCGbhun5lZcIZdZ3l5//BavmXLzfvArgW8wKxJ3SOcc+vweXjO3vJtw5nGTh+EM4SNFebBN58jjvBnku9gssPVM8Pn72GGPqZvYjHXbTN5UZ9/Ta3rC+vJ8Jl8Iubz2H4+2zXAMj6v7fklr6yvkauvh2eegVtv3YynnrqAxsYLqKl5kQcegCOOgCz/S5dNoK93RUREpNWVlsIhh8Djj6dn/wYzcmQw9+8Xv4CPP467ysKmpk9ERERyasCAtdm/wTz/POyzD9x4I3z967D77nDXXWAXbZHmU9MnIiIisUgmKxk2zPHgg466ugrgXN588xNGjYJOnWrp0uUe3nsv7ioLR15n+jLYTEfE2o0Za/HatXLN2pBN5Qchc66fKzMPX3pGxuZXbIbPZPbs6Y39zFw+M1cvI+NnZr81mqyPzehlzN0za+Gu7hXOJi0dGD5/mcnc1XUK53n+v70zj4+srNP981ZV9q2T9L4l0M3SaCNLiyCiOCKDuKCCI4r7gheX63pxYZy5Xpdh9LqDMKCCoA6CC6NzR2V1GRCQVZq1myZJr+l09lTWqnrvHxVI/Z7TXYfqVKoqqef7+eTT/dbZfuec95y8Oeep52FNXoryagfbKJuYZGEVI7n59sVIh1fdP3Mupuqy+8qxJi9KrvL1XaSpW2GnR2j+sWW2Pb7Eao+aHrf7nqJu1EjWBn0bbLuardpGSO94iO0r48vt9ir6bLv3FDt/3SO274yutPXXbefrhI7PSntAq4Zm/j+yys4bo+hYzilmT8Ugdt8DmsG1tl9WxG1tMdvtER0g/SdpT6caY9Qm707q5+Pt9jqu7Rwy7QT5AEaHqCNzVm+LPSCRMfL3XEmdb8BuLzMs1S+ymj0XD4lTYF8/9i0dtprAMM10wEOQBF1hPqzS9C0M9qf98x747/8GrryyCddeew6OPx447jjg/e8H3vpWoLGx8HUuFPSkTwghhBAlg3PAKacA11wDACtxySXp7/1ccAGwYgXwnvcAd96ZHhyK3NCgTwghhBAlygA+9CHggQeAe+4BzjsPuOGGtO5v40bgW98CenvD1yLSaNAnhBBCiJKkra0NzjlEIg4nnOBw5ZUOIyP1AN6LRx65Cx//OLB48QSc+3c493dpq7fpn/b29mKXX3KUtqYvEgnkM2bCGpCATxRp8Nj3KTVsQ0ajLWT+Rj5VroY0JHESJNVl6G3Yd2+CLMg5t5J89iJde0w7eYgVkqVCMj5Zw1cxbPU4o4eRT1/SHkvWMrU8ZjWII2ts/SMrbf1VA+QdN0X10KGrHLHbG11q18c6uwnKo2Vt2NDameWT1IUS1dReZM8ra94S9ba26KitLUXeUlN1LFBknZltV/faY9WzyU5vepxyjV9gtVA1i0kfmqD6I6RLAzFCfYmOVyUdj6lNVrs1uc9ed9V77PwTGfqbJB17sJ0lWcNV9mefHuHc5GZ7rLxjD0N77ipH6FxR9i9rR9knsJL0lJz9y0wsszuQrKbtUSZ13VZ7AHyUcqAnbV9IUcZ28rCVpl3RNSMIZQ2f77UHkzVzAU30kL1/sq9f4P5LGj2+t7NG2of48rHmTyxMwoybH34YuPLKKlx77VswMPAWHH448IEPAO96F9Daml0bXo7oSZ8QQggh5iUbNwLf+Q6wa1daA7h4MfDJT6bj4ICr8Ze/SPuXiQZ9QgghhJjX1NQAb387cMcdwEMPpb/sAbwRL34xcOyxwOWXA/RyryzRoE8IIYQQC4ajjwa+9z1gzZoTAZyPhx56ABdcADQ2DsO5y+DcC8pW81famj6GfZlI88E+UYFs3CZr7hOZojxcZoxMvEiHxx5axseKNH2+jvSHA7bWxPKlpl1BepuAH9eEPRaxQVvr+EobkDq5xB6Lul12fawtqhyYpOm2qySrrFairts+P+c828gEaaHIPmx4LXnpUQRpJf2F5jimk+bP1O1FSMTG3mzJKfI4rLL7wtmyiQa78VSVrb3mELtztZX2WPbAakenDrEF+W6rkYuvsvW2rLKZp/1P2fUtXm+/yjYAe+4rG2zfig/a7VWttesf7LL5rdWbSVi3nPJoj7fasOHHZ+proYilccohTpAeMjaS3bdv2EblovURKxLkfsqavwhpTQP9ere9R0zV23tOdCJ79m/jNquljQ7R+sjnzyXt+lJ1swsjZW0vIhn1x0gzd+gaO2s/XaR0P2SfvoCGj2thnz32Wc0xeJV9+zC0//lE+dLV9QiA9Ovde+4BLr+8AddddwHGxy/Ai18M3HnnmzE1BVRUhKxoAaEnfUIIIYRYsDgHvOhFwFVXATt3At/4BrB3LwD8DO3twJe/DPT0FLnIAqFBnxBCCCHKgpYW4OMfB554AgBejec/P50BvGZNWgf44IPFrnBu0aBPCCGEEGVFJAK0tT2Cm25yAI7CxMT3cNVVcRx7LODcH+Hc2XAuuuC0f6Wt6UulrO4jJFuXfZtSlO0YYQ0ew5o91vQxVZUHnJSqt+uKjJBuq8XqC1mTl2rKHjqabLDb5ixdzgCtGrJ6m76j7PpjE1b7M7TW6mWqhihrlzJSM7NuASA6aqfX7qPla7JnsI4ts/NH9tn52aevmh7NT7RmZO/WWs2Zi5AP3mKrrxzss5q1SMwuX1Nnj+XodqufXNtsvdXGE7bf7puw/TAxQTnEjVaEePZL7jLt6+5+kWkvIQ1fT4/V4HH9oxOknRqz2x8asOc+ssjuL+sn2Rdw5EmrMazumTl3PaeydxtpSbvtsRpdbftVQBtK/WJ4dXYPRUf6zvgyOz/30/EW8jAkzV91wrZrerLrhNlfk4mOUx4taXeTTfb48H0mjFTrTF9lj7/IoL0Ifb/VdqLdikvdHhsCHcgi5/ttikwZ2WeVNIKcX+577PbkwiFmC3sA9vcDP/whcMklL0NHx8uwbh3wqU8BF1xQs/8VzEP0pE8IIYQQZU9zc9rjb+vWdNRbc3M67xfowJe/nB4Uznc06BNCCCGEmCYaBc45J/2N39tuA4D7n9X9feITwPbtxa7w4NGgTwghhBCCcA54+cuBtrYLALwA8fiP8c1vJrB27SScuwyrV59U7BJzprQ1fdEoIhneeqlBa8SUIg1fpMFqqxg/aj2zAlm9pGFxzVYbhUCWL2lUyAcwG2GZmb6KPAjDtEBjlMfaYY3t9r7E+gDW9Fmt0ESTHf/X77bTB9vs9tk3z0dJo0dySPZji5D0acyWh6o+ylClnspeeolTqKCdM7q8SCVldibsvg51WJFa7R7KUz3ZCgZ7um2/cCQueqpnsWnXVNl+E1tm++HRq3aZ9q4R24+uu/+FdgMV1O+Ic4/5q2nftONI017TOGDaj/55nWlPUcb0+tU2B7qz1woqJwco77XO1jeeoZvzpIGr3W5P7MSR9thEdlnNWn2XXZ49DOt22jb7ObLGr66bfPZCMqQj5Hs32G6vi7o9dv7JRju9utd2/PhKq8Wtppzj6r32eIwvsTvAir7IFGkgJ0nPmnHf8aS545RSt2yJ/YDyu/1SEtbu3GuXZ40faaZ5e3x/56zfQPYv3c+FmCsytX+dncDFFwM/+MEF2LnzPfjQh4DPfhZYvbp49eWCnvQJIYQQQjwH2tqAyy4DtmwBgKtxxRXAunXARz4C7N5d7OrC0aBPCCGEECIH2toA4H9gyxbgHe9IZ/sedhjwhS8AIyNhSxcP533pfvG9KbrYn1T/umfbbMnCsT4c0xZ4PUsRR5ik17VkERDIZomTrwjPH80YQ4dEuPkmawuSrLevbfi1zPhS+yo6FqfXw/T6l2PVYvFk1um9R9l9XXo/RXWtsvs6upjisyiZK0pvXiro0HGc1tgKij6jP0fYqsMdalcYfdSucLJpZn0cizbaZWUAvtr2i8oWe+6mxuxrquVLrQygd5i2HbfH6g1HP2Dat+04zLTHJuz865ZYa4ond9t332/aYNd3X5+Nz4pF6PUqWcZMpWxfGZ202+dYNzTb66SaLGtOa3vStH//tH2d7FMz525qzPazJUvssRy6175S9PQOcHKt3XZFjfVg8dvsuZhaYqc3brbbn6JbRJSSwbjfMo5uKWxdVBEnK6Nx2+bXu5XDdnpg/Xupbzbac1fzYKdpJw5dYdqxvowd6rOv+VHHFyVdxA10kSfo3TnPz5Bli6cYzNSwlWhwzJrnGE6y5Lpp4qf3ee83ZS9i/2zatMnfe++9B7OoKGPa29vR2fnMNbcOwL8AeBOA3QA+D+AqtLWtCVjDzDXOuQNeC3rSJ4QQQgiRIx0dHfDeT/9shfdvwh13ACedtALA93H00Ul0dq4KXU8h0aBPCCGEECIPvPjFwB13pH3+0r5+d+B97wP27QtbsjBo0CeEEEIIkSecS/v8PfooAHwVP/oRcOSRwDXXAMVW1JW2pi/S6k+sPOPZdoo0eBHS1EWWk+8Hx6qRhoU1JYzLErMGAKnVSw84jWPX2JKFI48SK6wdwdhyW3vtTis28tHs4/XxpRQDR/Yy461W55WgeCmOZQubvu8Yu/267Xb+ZEhaVILkmYk66pekbUo2kX6T4rx81cwCdUvtsV7fav/k2jtqtUq7O1tN+4zj/mba9+0lDV3UFjdBGrq+7fbcXvv3l5v2TcMbTfsLSx4x7Zdufj2ysabe9uvl1VbD+Ku7rbTjkMOyf8Vsz6C1jKmvtvrOvsesJU1ikb2Ojjm8y7Q7BmY0ghzRxnF9iUOtLizaabWsiQbSX/bb8x61pWJike1Htbuyx/nVWncaVIza5Sfr7fINO20/HFlh9ZIRin2r3Ue6NGKMYt+iU3b7zQ9ZDSTHMVbssed+ajnFPfaTaDETjk3rsP43/vA203ZP7TjwuhC8fwYsVihGM/R+22/7Of8+uMX/XJo+UXKkdX/1AC4H8BIAv8Tq1V/C9u33z9k2pekTQgghhCgwad3fZiQSL8HXvgZUVr4RO3b8Fr/7XXHq0aBPCCGEEGIOiUaBT30KSD9Q7saZZwL/5/8EvtQ+52jQJ4QQQghRADZuBIATcd55wD//M/D61xfW16+0Y9gI1vC5KspUYm+8EK88TNkj7epIWMa6OVof6/aMD+AwrZsii3yD1SqlKij+qdfqVUZX2dpio+R5RaUmqq32qIpKnWi00zl2rWLYtvc93x77KGmVWMM3utxOryJLsLFlVqsUG7HLt2ywurt9T1mdnauxOjJfZQ9Apn9bLGr35aFtVpMX6SM/xkV25+7ptlqmFyyxWqd7dtnpp7c9btr7Wq1m8D1/fZdpn7i2w7R/Mmz7ylvX2Fi133Qfbdp3b2s37S+88Nem/dd1a5GN1XVWJ7Z3OHuc4Zmn3mfa7MvXO277qvEhZG1mte0Hqbg9F6nFdJ6jpDUdJ+1oJYd7WSbJgrDS7jrGltn2FPVL9s3j+MLKEVsf++5N1WX/O7thh+17VfusDm5sje1LVb1WxDhwvNUZNz1KF14Gbh9pnBdb7albaQ+G4/sda/YoppLbjB8lnTJp9Bzf78m3L8r3fytnFKJkaWtbih//2AH4EH7zm2+jtfVv2LXrWLS2hi46a/SkTwghhBCiQMz4+12CG2+MYnJyA045BdizJ3zZ2aJBnxBCCCFEETjrLAA4HV1dwBlnAAMHfjifFzToE0IIIYQoGn/Gr36V9vU755xAomxemVeavgDk88S+e6wRiZAPlWukLEnCD1ldXnKD1W7FdvYeeOGG7Nm6JgMTQGSKNHpRqyVinz7W+PH0RG0dte2+s38Y+4Ox31iKZG9jLbY+1krFSP7DcJZuot5qofr/ZjNYscqu0JP2y1eQ2GrrzP7XHm/P4xBl05580qOmvbjKzr9vIns/SaXsvmwesHmntTF7sI9aYZ/h74hTACx5x7GG7wWLrKYwkbLn9sae40z7qiN/bNqf6nhj1u2/9pDNpr1lxOrEukbtya6vsbqynXvs9FOPmMnm3Vxrjw17/rlx8lusJI3cPnvLih1phVyxP1tfutGVpolEDWU8O/KfpH5b22Pnn2iy88dX2nZNt10+qL2180cSdv1jS+z+JavtdVwxxBpHuk/spnzyQVKIZ+rkSJPnJrL7lvoqWxv76rGakjV9rtFqRV3U9rvkTusfGVlMOuihEk6xF2IWtLW14fTTHYD34NZbf4BY7H8D+ALa2trynturJ31CCCGEEEXiGY1fKvUDvP3tQDT6v/Hwwx6dnZ1535YGfUIIIYQQRcY54JvfBJqagI9/fG62oUGfEEIIIUQJ0NoKfOYzwC23AMAL8r7+ktb0ee/hMxSNEfJpCvN1ijRb3ykkSLOSJL1N3Ori3CKrOYntpq/VRKzuDamZWpMtVosT6xm2pSyx+papRlt7qsIqZCoHaF9Jwpaos8snAzGWlBlKfmAD66xGLkkWWFNk3dZAT51TNH9g63ToWVPIyydr7Q5GSLPXsrbPtHufsNqwyqNmDNiipOGLVZEH4YQ9V1sH7bpOXNph2v+9+1DTTiRsP9jWbZdfu8TW2lJtvdeW19q+cdvABtMenrQHZ2DKejwOjNn2ugbrcfjBrW827SMb95r2bx6zwclTKbs/r1phNY/jJPB86JF2015xiN3+bQ/P7M9R660ece8ie43WNttjMx63HXkxrXvfIGlnSQ9Z3UtZu3RL8HQJT7RYjV3dLju9atBOr+630+PLSOvaYI9VU6fte6kYaQrH7Po5M7tyr+0rjI/ZW/rEOuu1V7Urw5iQ7n+g+ynofoqdtt8kWOPc1WPagezdfjJF5Oxd1miTho99/YRYqLzvfcCnPz2O+vqP5H3dBX/S55w7wzn3hHNuq3PuM4XevhBCCCFEqdLcDHj/J6xd+968r7uggz7nXBTApQBeBeAoAG9xzh1VyBqEEEIIIUqbe/H44/m3byn0k74TAGz13m/z3k8CuA7AWQWuQQghhBCihNmLZDL/Zs2F1vStArA9o70DwIsyZ3DOnQ/gfACoBmfhkgYkbGusUQmBNSiIkcaEfar2Wq0WWkgwlMHEGutd5khPUzGUW63s11W13YqL+jbY8NuKUasVSlaTZyHJeyqsjSAc/bUxQnGulaRtqh6w29t3LGmheuz2J+vsBipbshv99XSzt50VCWbm7daQT97Rq6xQqzJij+X6etKNkU/fS1ZsM+0H+1ZlrbWx0nqndY/a9X39sBtM+/K9p5p2f9xeB09ErG8e87v7ra/fGcf9zbRv236YaTetsF53SfL9q6CTv3Xceig2rSKtFlHfOqPF6ui1oruqJntsJiftNcZazu591oevbbn1ynx6ic3Xnmq35z66007nzOpY3N5V+o6y/bbFyhv3k2FNmdKk0WM/zJq+7H/G83U6scLu/1QD3RP5Oqb7RKo+Y/+r+X5HXp5d1k/SLbNaVfYpDWiiK+h+2UzXLGuq+X5Njzg4a91VkxDYSg5Dyfxds3Zt9nxqIQrNokUrMTAALF5cA2Dm9+FsvftK7tu73vsrvPebvPebKhDy7QAhhBDiIMj8XbNkyZLwBYQoIG94w4VobQW8H5vO6U3/zNa7r9CDvp0A1mS0V09/JoQQQghR9ngP3H47cPLJ+V93oQd9fwVwmHPuEOdcJYBzAfy6wDUIIYQQQpQkf/gD0NEBnH12/tddUE2f9z7hnPswgN8DiAL4off+kee6PGtEPH+thdpWTQOkhq3HVXTNajsD+/hFSfeWIMFMnfV3y9SoRClbN1lta4+O2225JPlzjVhN2+Qya5RXMWS1UKOHtZp2Y5dd/8iKGLWzZ+s2dtljObTWzl9tLbkCGr5EldU6+ag9duNL6FhOkb9Zn9Ve1W2z9VfZ3Ud8k/V3G9w5ox9KLLe1P0Xebw2NdtnRMdIORey+vXqd7bJHNFkx0ZJK6y/2t0Gr+TusyR68hydsP7y/27bXt1qN4YZGq7W6e5/1S1u/cYtpD5Kv3+ltj5v2H3etN+3dlJ27e6nVYj3UY/enMmr7Snuj1br+Zc+6mdrbrZ7yiftt7aka0rqSttNtsfrGrigZ89WQDmyfPZdVJIoeX2LPbW2n7YfV/XY6+2dWDdnpUzXU7+nP6ugUaf4om7dqD4lpSWc3vtSey7pt2X37HN/TMvLHPWeRT9K8NaR/pFpYl+woKxdj2XW5fsjWzr6qPD1FPn1uLlPphSgw7e3tGa9ubwWwEe9851q88532OmprawssmwsF1/R57//Le3+4936d9/7Lhd6+EEIIIUQp0dnZCe89rr/eA/g7XHrpkoCez3s/qy9xACX4RQ4hhBBCiHKjqwv4wAeA448Hzj9/brahQZ8QQgghRFFpwBveAExNAdddB8TmSHxX0tm7zjmTx+jHrZAr4NMUQnRxa/YZaqxehjUsgfrGSFMymKHHIc++2CCJ0GjdPkpaIJo+2VyZtc3E4tn1Lpx9y9qjiSb7Qd0e0uQ12+m9z7P1R8lyq/5pq6sbt5ZfmFpiC4qM2vnHllktVOsRVucW77fed9H4gc9dTZ0tLpG021pUb7VDJy6zX5HfPLDCtEc4Gzdu+9FZ6x427Xc0/8W0X3vnB0376hddZdq/HNhk2murrD/aQzGrsVtebX339oxbb7f/eNT6+LU2Ww1iRY09F7y/AwNWV3fexr+a9q87n2/akdhMX2SfvtQi8tHbZ8WliUm6Jltsv170Z1sLWQgG/CWT1TR9Krvb5+gS249qe1JZp1eO2H463syZ13Z59uGLH2q1u1W92f07x9bYfl/7tBUtTrVa3XFF/4x+NTJO656gmwL76NFvIVe1h3AgAAAgAElEQVRPPqohWeZh0QKs4WM4ez1w/yc5pBDzhYkJoLr6t7j//iksXfp+rF9/9ZxtS0/6hBBCCCGKwPAw8JrXAOPjJ+PHP67A3r0/mtPtadAnhBBCCFFguruBU09Ne/L96EfAeefN/TZL+vWuEEIIIcRC4+67gXPOAXp7gV//GjjzzMJst7QHfZEIHOk4DJVW15bqsTqvSJPVMiFF3nAhuDjr8Kz2CxNWE5NaOZOJGhkkn74lVntT0WN1VFM0PVVp97uy326Lff5SlZTBSb5/jV1WWxSZtMei/wirj4lO2OWH2u1D4Wp7qFFHuSpJktuwJo+p32K1XKMrbX3RMVv/8D1WvBV7vj2eS4+e8bLbSb5zfozyXeP22J1yygOm/V9bjjLtlx661bQ3j1nN2+pmq6v6zdNW43Zf3xrTbmm0feVk0nm996nnmfbftdtjxVnBrOHb2m8FlMe27zDtoxp223pitp5rnz7BtH3Knovf7dhg2qyRzPRBHHnSnosI+9iN23Wnqm2/qVhiPasGj7Cav9pdpLGjWGDul1Nr7PrJYhFD7bYeR7nE9btJ67rITmcNH1PVSzplum6nGu09LkI+f9XbbOh1ooW8QwnXN6P3TC0nX716K3h0pPmL7LP92rfYfhbIImc4O52zzkNI9ec5eV6IIuA9cPnlwAc/OIl0INnZePWrZ37nzNaHL4zSHvQJIYQQQiwAdu9OW7H8538CwM3o7X01WlruL2gN0vQJIYQQQswR3gP//u/A854H3HIL8K1vAcBr0dIStmT+0aBPCCGEEGIO6OgA3vAG4K1vBY44AnjwQeCjHwWCQbGFobRf73pvvJ0CvkyTpDkhDR/7+nFWb4SyJQM+U+Qb5Rqth5ZfbL34XIZm0NfZWit2WO2Nb7BapED27qj1zPJVlJVLGr74KrsvlUN2XycWkZ4mZdsJ9i9L2r8Hljxo6+k5xurKYiEeWTHS5CVD5Dy1O8incJPdwNiwXUFrjT3XO57O0PyRBu2kFzxp2o/uW2bat247wtY6YM/ln7bZrNokaQSTS23tY5T1Cxtli+cvtpq68zpONe2NK+z0m7ceadqsCWRfwbZVVmvVPWH78e3dh5n2jh3Wz9KN2P1b/3yrCdw1aHdoaYO9bjoeWfns/2NrrHfbJJ3Hqjabg5x8ytYaedxq1qpIMhem4UuQ5K2qj7Sia3m6bbOfZYruoFNWmov6XfY6TFXaFUw12OtospE8Ix+0ek3W/g4fZc9V7U57fCeW032he0YrHNlhM6P5foadNJ3un67C1u4nsnsKujrSZ1MuMGv2XFVV1rafIM21ECXE+Djw1a8C//Ivae3yokVfwV13fR5HHpm+ac21du9A6EmfEEIIIUQe8B648cb0q9x//mfgta8FHn8cGBi4CN4n85ahe7Bo0CeEEEIIMUv+/Gfg5JPTr3MrK4Gbbwauvx5YsyZ82UKhQZ8QQgghxEGyeXP6id5LX5rW8F1xBfDww8BppxW7siDO++KICZ8LTdHF/qT61z3bTg5brVC0wep9Apo/8vFjDUnAty/H+f2Une7bZrRL7NOXaiVt0h4rFkpl0QcCQLLe7tvkIltrLE61hjDRSloqyvjsfqHVHNbvonqqrBZqsp6yg8nSsGrQ9rPRJeTHRqeONX/JWrt8aqnV89Q8brVLo2tm9EexAdIvrrD7WrHTbmyqyWqXVh9utU0NlXbb3SP23LbW2nPfSPPft9VqOeqarI5tZZMVpvWOZvdeW1Zvr4vHu5ab9uJWO73nafZnI61WxJ7rE9c/bdodQ3b5lfU26/f++9eZdvWqGfO78Z1Wk1bZb//uTNTY83z4CVafuO2P7bZWuoSj1sYPEZJ91fTZ9bNGj0lU234aG7fLVw3m5v3JmdaN22zByRorEkxV2O1XDlDfJb9PJlVNPn979h1gTgSyxwO+pMO0rQYSMJLG2g/Z+V1jffbpFXbfA1nrzVY7ysv/vv/793nvbVD1c2TTpk3+3nvvPZhFRRnzxBPA8cf/AvH4GwAMAbgYwHcAjAXmbWtrK9grXefcAa8FPekTQgghhHiObN4MvOUtwIYNQDz+KnzqUxH09i6C9xfD+9FndXuZP8XS8DEa9AkhhBBChPDAA8DZZwMbN6YNli+8EADa8bWvoSieeweDBn1CCCGEEPvB+7Sh8qteBRx3HHDrrcDnP5/W7l18MQD0FLnC3Ch5n75ML6YIae5Yw8caEIRpQvqtdsrVZddOgXz9fF31AWZEQA8T6bW6Ktbwca7lxOE2z7Wiz2oEKqKcpct+YOTrV2HbdV1WdzbZbPeleatd39Aau3xNr9UysV9afIWtD+Sfxn9usIYvYjePpXfYDfRtsPWyz2A0PrOBiLUYDJBooJzfUVvcjqeWmrabtPtWu9ae27GE9S/b+0tr/hY50Z5L9vHb2rXatH1Ddr3mmkbbd2obbL/v6bH9PjJJ+bAtfHIs92639bO33i7YP3Erh+36R/tntGJVK6yPXHSP1XnFRuyx7bil3bRTJDursXLLwLkesxaMqN9tNXljrbbWcRvpjMans2v4xpvt8pxZXdNjz13FsO3YsbgtOExry9dxILObpsfipLNbOnOuMnN4AQBjpEOKZf/14LvtL7uAD2qzvcexBg80P8jHzw/a+lI7rV9lJFsuuxCzoL29HZ2duwC8GcAnARwDoBvAdzE4eAm++MVBfPGL6XmL5bd3sOhJnxBCCCEEgIEBoLPzH7Bq1SSAa7FhwzH4/veBsbFl8P5L8H6gJLV6zxUN+oQQQghR1mzbBnz848946n0VRxwB/L//l/7SxnvfC1RnebE3n9CgTwghhBBlRyoF/O53wGteA6xfD3z3u8BZZwHAsbj1VuDMM9MRaguJ0tb0RSJwmboN0oAk+2yebXSxzaH0o6RRoWzdgMZvILu2yVM2ZGQxfV0nU/M3Rv5bqyjPdIL0LFHbsyqGrC5rYrnVG7K/WJL0jZzBmay2p3qknbRUo+TVRlnArY/YenqfZ7e36CnKCo7Y7cXG7Poqhsl/jA59fKVt9xxjtUoTS229vsKe24qeGV3d5GryNquxtUaftjqqycOo38StRi8yZQ9+fNAKzRpr7LmPntFr23H7J+PiJqt12p1oRjZiu229Q2vtuWius+d+fNzWn6yz9Y88breXrGXzO9tsech+MHh4du+7yu6Z7ad6qBaO015ut1273a6MLA+D2bfWMjGgyRtZYdcXIblk7S7bbn7E6jX7n2c3wP2a18fXEWvsWHtbOUAawH7bFycX2/tAwKeP7ju+yV7nU80zfbWSPfvCfruRdyhrqknFG/A59ZPZs3l9j62Hs3YjtfY6C8v6FeJA9PcDV18NfO97wNatwLJlQGPjtzE4+DX85Cc7551OLxcW2BhWCCGEECLI3/4GfOADwOrVwCc+ASxdCvz0p0BXFzA4+DF4v2Ne6vRyobSf9AkhhBBCHCQTE8CNNwKXXprOxq2uBs47D/jQh4Bjjy12dYVHT/qEEEIIsaB48kmgqenfUF3dg3PPBf7856cAfBLj4y34wQ8cjjvOwbmZn4X8SjeT0n7S55zJYwz4QFH2Lmv4HGtA4lbr5MgXijWDvHxgftaUZGr6SKPHGr5IP3lkRay2hzM4q/ZYXz3EaLyesHqbyLitLaAhhN2XZDX5jY3b9Y0ut1qs+t12eqoy+98PnNWbsqsL+Kuxxi9KWi7v6HjVkvdcRmSr3241cBMttl1r7b8w0UJCs2rKHW7JbvwX/601hxs61p6Lmq12+/tqyB9ysdVCuXG7b77d9uOu+1eZdmTKHuvEMltvZIJ0ckN0bsbssfVHWd1YfCXl5w7a5cfW0PYqZ/pe9ZNWzxgl+eREq9XAxQ+1/bZ+K18ndnnO4mXNnWsiLelIdk0e+1fWdmf3TOTriNs+avtWVfcITbf1ZWrwACAyRdcx6ZR9A92jSIdX+VT3TIN9SavsRem7SWNH2bnB+x/db0kj7aIkDg1rEynK/nWclS7KnvFx4Je/BK64AvjjHwHgPTj77Aqcfz5w2mnrEIl8HcDXi1xlcdGTPiGEEELMWx59NG23smpV+tXtjh3PpGWsxs9/Dpx++sL7Fu7BosMghBBCiHnF2BhwzTXAKacAz3teWrN32mnpyLQnnwQ+/WkA2Bu2mrKjtF/vCiGEEKLsSEehde5nyvMBvB/A2wE0A3gSwBWYmvoRrr9+H66/fmbOctHp5UJpD/pSKZOnmxq1WibOXuTpjjWA5KvHWZDs25fa12eXpyxJNJDGpW/Gx49zgCOU28saPqRsrRU7rAch620mVtpa2dcvVW31LqlaEtERqQqrJaoYIh+8KC9PmaS9JLqD1S5NNNmHytX95NsXt+3ohNUiTSyyx2tyka23+Um79dHFM/9nnZanQ8/5rC5p173oAXuZTJIXXIx0aUOHUZbvPnvsFm2x0/e+kHKU60gzSL5+fjfpvKjeSpKLVpDP4Bh54SVIF1e307aHSXPYutWeq74NdvtVu+z2Kgdn2lXW6hIDR9h11W23J6fKXoKo6SMtKd3BuB9zNm7M3iJQOUxZud3W5y5RZ/clQdrR+q1Wt+YrbUHswxcdsp1lqtUeW87iZY2fJ62wr7Lbc3G6DuNWC5xamZEj/dhWuyz54rGmmTV87JPnSXPHBDR4nL1LBO7npPlLTfA9RywkOjs74X36+ozHgeuvT2v17roLqKwEzjkHOP984KUvPRzO/V8A/7e4Bc8TSnvQJ4QQQoiy5MEH0wO9n/wEGBoCNmwAvvEN4B3vAFpbw5cXQTToE0IIIURJMDwMXHcdANyNY49N++q96U3pp3onnwy4QPSLyAUN+oQQQghRMPav19sE4HwA5wJoQEVFI77+deBtbwOasydTihwo6UGfT6WQHJ7JvmRNh1u2xLa7dtjlSfOR3GkN2djnL7XHftMn0tRoCwrJjsz06XOs4RsgoRX5Z/kp8mbjXF/y46raRVoi8u1LNpLua9RqhfjEh2mJGp+y+pqx5Xb/+jZYfWVjF+XbVpNujTNKU6TxG7LL9z7PVsy+fiOrWOM3oxcabCNdlZVtmXkBoG+DnX+YtMC1e2x7dAVN38XebHb60FrSwJFuLcKaPTpWw+son7bTri/J0imybqvrtPXVdZM33jK7vug4ecfR+vh4sG5uMuMyYv1g0xba1pStheF9Y18+zv1t2GEPXuWAvYaH221BqQrSFO4j70/y7ZtYRp6FPXbno+PZ7xmV3Tbbl6/zVJM92NG9VhTp68hTMkadje5hLuO+49autusiDbNfau9Bbi9Np/thmA+fq7InLyw7N7C+GN0DSIMIusWK0uUZvd7AQPrV7ZVXAg89BNTWAm9+c/qp3otedKSe6s0BJT3oE0IIIcTCIf3djBfjne8Ebrghbb1y3HHAZZcBb3kL0NQUtgYxGzToE0IIIcSc0tub9tW78koAuAO/+lX6Cxnvfz9w/PHFrq580KBPCCGEEHmnra0dXV2HIO2rdzbSVl53obX1F+jo+Brq67MvL/JPSQ/6nHOIZHo7kabDd/eYdoo0Juzjxz5Rnn2gaH722gtA042vFWn2WFsTyOYdGc06HWNWiJZqtuuL7LE5mZFY9lMb67P+Xez7x5o+9j+r6rXHOjZKfmHJ7JmmkYSdPlVr1z/ZbrVTy/9itVUTrfZcjrVY/c/Iipl29YDdVoL0hazhq+k2TVTbbhaAp8fG9z/fs7WtsW0+NswUdZ3a7bZvjC210xu32XacNHhNHbZvDq2x62MvvUAeLb9+oa6eTXdXNWTPxdAh5In4ZHZNX91Oe82NL7G6rupe0pKO2+JH1th+NVlP/brO9oVYnPWNdn3RMdLi8nVP2U+Ti60vX0CbS757kR7S8DXZ35Ke1u+3dNh6+B6YqaujrFzO1vUd1rAxFeKrF8jOpfkT3dnTEQL3a74fj7LJorJ3S5XubuDqq4GurpsBHIZFi4C3vz39VG/jxhMBnFjkCsuXkh70CSGEEKL08R64/fa0Nu/GG4FEAgB249prD8PZZwf+xhBFQtm7QgghhDgoBgaAb387bZz8ilcAt90G/M//CTz2GAC8DG97mwZ8pYQGfUIIIYR4zrS3t8O54+Hc99HcPIqPfQx44om/AHgH+vpq8I1vOGzY4JR9W4LMq9e77LvH6h/WhEw/X34WzmoMzE8aFFdt9UKpOGX/1tHyrOfJnEQegmE5l77bavTY48rRvvnFNhc40UQeVkQl+YdVbe8/wJxpppY3Zp1evcv6jSWarHaqijR+o8ttpmmULLuanrTr4wxTpmLUHvvmJ2aEdWPLqJZBO69L2nWz11v9bnusk1V2hhry2RtfRJ6JdCpaN9vtx5eR7ouMSOts1wngKRZ5nCweHUmxJhuyeyayl17Djuz11nXb6VN17Os3055otNP4WDCcrTtwmC2ucoR87Vh7uttes558+Ro7rQawepfVuo62Wy/PGlpfIFuXritPGdhh1xnIb5Pzbhm+D7D3XsBbNNM/dILMLlkjF6LRY8J8+6LkixpGatjeAzzfn8M0hiLvjI0BP/sZ0Nl5PYATUFsLnHcecMEFwLHHngTgJADXFLlKkY15NegTQgghRGHZsgW4/HLgqquA/n4AqMd3v5v+coZ89eYXer0rhBBCCEMqBfzud8CrXgUcfjjwne8Ar3wl8Ic/AMDz8OEPa8A3H9GTPiGEEEIAAOJxYO3af0Rf33kANgDYDeB7SCSuxPXXd+P66yGt3jymtAd9zlntG2nyAr59PJ1Xx1mNDGlQkn1Wf8PLc15upo9UYFtUK+sFGdbwBZZPkBaKfP4q4/ZYpJqsP1hAz0OZnb7Gbj/WTx5ZO63nll9HWiLCUaZo41PkE9hqdXfjS0njSL6BNXusGV6y2h6fRN2M0I11YZGEXVfdXqsNmmiyD8CH1toVVIxafWKygj0N7faq++2+J6vI+41kV/VdVG+I52FqgDR0dKqr91Gb6hldZs99/U7enm3X9NrlY6P2+EUnaP8mZo5nbDy7Dx8f+4q4nb/5CdsPM88zAFT2k0ki+djFxuz6OIuXqdtmffTGV5LG7zGb551Y1Zp1fZGQ/G5fZ6+DgJa3zwbMetIZ+1Vk2kh5ui5DI8jZt6zJC2iWw2CNHd1Pef2suWZYc50kjZ/IL52dwKWXphMzBga+hE2bgI99DHjTm1agsvKLAL5Y7BJFHijtQZ8QQggh5gTvgTvuSFuu/PKXgHPAG98I3HDDybjnnjvgXPg6xPxCmj4hhBCijEgmgV/8AjjxROCUU4BbbgE+9Slg2zbg+usB4E4N+BYoGvQJIYQQC5y0t141nHs/YrEncc45wD33PAXggxgYqMNXv+rQ1ubgnPz1FjIl/3o305uJs3XZgyrgC9ViDc9Sg6SHYU0J6eZYUxLwiVpkv7qUmV3p+60WKNJgcy1TwyN2erP12QvoXbg9QPtC+hxHepxIv50fpLFjTR/jJki/uGa5nU7+ZLFJ8g8btPvLnmA1pEEcW2uPbVUvaRQrKLuY9ieSUU6S8kw5nzVZnV1H1tBhdWJTjVZHFosnaTppTelPK9a1sQaOdW2AnR4bs/vautnWN7LW6sIq4nb+6Lhttzxut8Y5yPGllE3cZ5dP1NrpFSP2eFQOzbRrt/Saaf0vtBq0xm2csWy1r5x1W9Fj+1WixQoaJ5bZ666m2x6ryKStla8T32Cvo4BmkIj1kO6MMrP9kJ3O/pyRfRR8XEECUSKg/WUtL+eLVxz4ls/3oFSPFYMG7n/sNZpjtnlA88c+rLQ99vmTxu+5MzgIdHaei+XLL8aePcBxxwGf/jRw9tnrEI1+D8D3il2iKBB60ieEEEIsQLq7gQsvBNasAYCLsXFj+lXuvfcC//APQf9tsfDRoE8IIYRYQOzZA3ziE8AhhwBf/zrw6lcDwHG46aZ0Pq70euVLyb/eFUIIIUQ4u3YBRx75QwwPvwVABYAfA/gyrrtuq3R6AkCJD/p8KmU0KazZC3jhke4tQZqUwPIhmhLWoLBmBXHrNZe5PdafBDR3tC7WzwS23UiawD3WJy+yZLGtjbVAU+TLxyTIY6tjp2n69lV2OuUMp+pIe7XTare4Hs7yrdhjtVS126xHYqre6tRifXTsScvlxmf6QuvdVl85cqT1UotMkh6QfOlicXvsIlN2/qF19lw1PkWehgR7y0022DbnwbLmMDJl65totX2putdeB+xFN77UHsswzWFsnLRcLAeNZ89AHV02s3+TjVbDVzVgl2U/yIA/JPnuTay02s9EHekPt5PmjzKp2f+RNXzshxndS9pYviewbnipDUJ2NfbYB7JxQ7J22ZcvwOhY1smZumbWzPFrn8A9hWpln9KATx9ppDlLN3D/peXDsnzFDLt2ARdfDFxxBTAx8Q68+90xXHQRsG7duwC8q7jFiZJCr3eFEEKIecjAAPDZzwLr1wOXXQa87W0AcDh++ENg3bpiVydKEQ36hBBCiHnE2Bjwta8Bhx4K/Ou/pg2Vn3gC+P73AeDpYpcnShgN+oQQQoh5QFvbOjj3PtTW7sCFFwL9/f8F71+An/zEYd06eeyJcEpa0+ecQ4Q1M1kI+EiFafhCfKcCsOaENSyZ00L0gQFI/8LbSnGGJtdaT56Cu7rtdNbDUEan20vrJ/8wTxo+R35i0YTV6LGGz5PmLzZIfmfsZ7bIahgjg5QxSt577I+WOZ11X7U7rB5wqtHWVrPDrit+KC3fYafX7SStE+nEWMPnKEu3aYvdN84RjsUT1CbNXw1ppyrsuY6M2vkr+8mXsN/qwJL12XVvXB9Pr95lj08sXnXAeflYJBvJt45qZ01e1dNWCxtdYb3mInHbryqp304dYq+DyJNWKwvy4vQDVh8auI5a7PYd+eaxtpY1egEfPdIp8/SAro6u80gTXZcZ9fluCmUmWGcclnUe0AiyLjnH+ysTdv9e6Nx2G9DVdSOAjTjxxLSG72UvOxPAmcUuTcwj9KRPCCGEKFG2bUu/vn3FKwCgDr/4BXDnncDLXlbsysR8RIM+IYQQosQYGQEuugg46ijgppuAr3wFAI7CG98onz1x8GjQJ4QQQpQQv/oVsGjRbnzlK8DExDWIx1fhc59zaGtbHr6wEFkoaU0fE9Bw5KgB4exe1pywfibJ2ZGslyEvvliGr1Wyj3zmBkgDt4i0RyvpYqZsXkeaOpDfF+tzWJOX6rfbj5CGj/3PAr6CrE2iegLbX2Y9vlirFdtqfQB5fzjrl30EfRNpGNkTrHZGR8e6r/H1S+yypDObXGw9/+of6THtJHkCctZuVS9pm8gHsKLPaugya90fPko5w5RrPLXUHtvqXVaz6KhfR8dJ60q5yJFKyqDu2mPr2bDGtGODpF/l9WX0LV8VlvFMx26X1dhVpGy/Yq0ok6qz/SpC/ahiyy67AGfZkgaP87ZTT++w0zlDm84d32M4nxacZ9to7zEBXz/WJVfb5Tlv3I3PnCvW5LEvH/vkBfSFOfrmcQ5wGKznDmSvL0B27AA+8hHgxhsBoBt33rkCJ530DgDvKHJlYqGgJ31CCCFEEUmlgEsvTb/K/f3v0zYswAtx0knFrkwsNDToE0IIIYrE008DL3858OEPAyeeCDz8MHDhhQCQCFtUiJzRoE8IIYQoIO3t7XDOwbn34NBDh/GnPw0BeDduvtlh/Xr57Ym5o6Q1fd77Wek4wnz7Al56Ib5+AZ8p9tLLqDXUI5D3i3z4AnpFXl/ELp8kzSBvL7rY5s0yKdIQBo4N6XEC/l/sYRizf0/EOIuXlvfsQ0jaKaRI69U7nH36npnjk2xbZqZVd9htsecf562mSD/IurP6x+2+cU5wxQ6r72R8FeUQ92XPT/Wkv6zdQseWPA9Tyyn/leqfWGePTyxOfZO851jDFxm386eWkF51JKMeylhGg/VjDMA+ndutvpD7SWyA+jFn1VKGdcAfkzV4EdKtcYY1a/TCsnFz9Ab1Q+Q/GXJPYw0f71+m5o/XFfDlY/hY0b6zRjpJWbsMzx/m+xeqIZxHD8Y6O0fx2td6/OY3wKmnAldfDbS1XQXgqiJXJhY6etInhBBCFIg//QkAHsBNNwHf+AZw662AHuqJQlHST/qEEEKIhUAqBXz1q8A//iMAjOKuu4Bjjil2VaLc0KBPCCGEmEMGBoCVK2/F2NgrAPwMa9Z8Ecccs7nYZYkypGCDPufc1wC8FsAkgKcAvNt7P5B9qZB15pjFmKtGhPU2YdvL9KEK06sE9IAhnoCBWiiDM5BzyVoozs0cyq63iS63Oi/W7zDsJ5ba0mGnk3+ZH7LaqwAxOjdjlFnaZLVZnB2Mmhnvugh7DBIp8noLeMWRfjDVZH36PPva0fy+l2pbu8I0o3utDss3WN89N0aaOfKeYw9DhnOLWfNXuW171vp4/sgIrY91cKRpNMvX2H0LwJq0OnusU4dbj8Do07vt/NTvHfvukUbP91OWLsF+l4HpIZo8vk5Z5xaaR8veeDR/4L4Sko+bqVYN6AFDNM5h94BALURgezne83j+QC57iWr6tm4FXvMaYGzspbjkEuCDH3wznHtzscsSZUohNX03A3i+9/5oAE8C+GwBty2EEEIUlNtvB044Adi3DwBOw4c+pAg1UVwKNujz3t/kvX/mb7G7AKwu1LaFEEKIQnLNNcDppwMrVgD33AMAfyp2SUIUTdP3HgA/298E59z5AM4HgGrQK8scX+fmSljMm6f5A7Fs/Lohy7xhtYe+CqFtBSxWeHqI9UOErDPYvoEtWtgagtfHFjGBGDiKfOJ4KbZwYYubCL9q4pi6TGuNnfQKr872q+hO+/qSX1f6Bjt/pJ9eQVKEHL+a5mgsDNPrUY68q6JYNt53PvbL7bF0e2wMW6A+jnXjV5gh9bHNiu+2MXWRJJ2LzPojIX9ncq1kkRLh1/zj1O9p/YF+x/GBHEXGMWoEWxsFXknS61y+TliGEXhlybIQ7uf8yjXkdeMkqv0AABVsSURBVG4gajLLtvkaDpPDhMpjwmyrQrbHEXVhsZq5kvm7Zu3atbNaVybt7e3o7Hw9gG8BuAWPPno21q0bku+eKAny+qTPOXeLc27zfn7OypjnIqTVFz/Z3zq891d47zd57zdVIETvIoQQQhwEmb9rlixZEr7Ac1on0Nn5XgDfwtlnA+Pjp8H7QXjv0dHRkZdtCDEb8vqkz3t/Wrbpzrl3AXgNgFd47/nBmRBCCDEv8R74X/8LAD6P974X+Ld/Cz6YFaLYFEzT55w7A8CFAF7nvQ+xrRdCCCHmD//0T8DXvw4Al+DKKzXgE6VJITV9lwCoAnCzS3996S7v/f/IZQW5Wq7kqvnLVWeXTZPCo2nWn4TpAR1pcaKs9eH1hUTEBWLcuD7WKrFdAmmTQrfHGjvWHlFcFWuh2GqD237URpW5Zopty1Yb6weXUkwZ2b84sixhXRrbzwRsQsh2xA9YjaHjaDDWxLHOjeoJ2NXw9khz51rt/vKxBB9b1iRyX2BNIGutMvt2mBaTjzVFwPmnukybtai8Pr6OWAPIWtXAscjxN3eyz0buBTR6YfewENsSvu5ZlxdtsNZJ2aLNQmMqwyLfQu5puWoEc51eSnzlK8CXvgQAV2Lt2q/DuQ8XuyQh9kvBBn3e+/WF2pYQQghRCK66CrjoIgD4MRKJ9yMafX+xSxLigCh7VwghhDgIbrsNOP984JWvBIB365WuKHk06BNCCCFy5PHHgTe+ETjiCOCGG4CSjQQRIoN5nb0bpgFhndxsNSaz8a3K5uG3P9ijKjCdawmLc+J9CYtvCtt3Xj9ptQLaJtIapSiOKtrSTPWR7i7Ek4t1d6kMzWCEfPlSpCeMTJCua4qiryqyXyaO1h/Q4CX4XFG/pCiwsOgvPrYBT8S95Ju3crndHmn8AjqyZdb3L/U06ejCvOz4+Gb0/YAWk/SCvCx4XXUcb0i6Mj5XIdrWMA0eLx+mI84V1hwmB6yvYOCeRteRY80ex66xx2OW+1CoZo7uES7kHjFbAl6iVPtsffpmQzyeHvAND+/DI48cj0WLuuTDJ+YF83rQJ4QQQhQS74ELLkg/6fP+zfC+s9glCfGc0etdIYQQ4jly1VXAtdcCX/gCANxW7HKEyAkN+oQQQojnQGcn8NGPAi9/OfC5zxW7GiFyp+Rf72ZqWsI0I3M9PZesyUJ7TgW0PCF6mFzXl3N2cIjGkLVJodoq0gwGfARZ+5WhO+P8Vc4lZt+5gJ6SvdI435RyhDk3OKDh4yxb9j9jz0SqlzV8gfURXA9vL7C/u7pNM7J8qZ1O+smABpKvk4xzF/CN434W0m/YZy+gPWXvONaBkZY04IMXonUN9MPa7PnggWzdEG1rGKz5Y1++QEZ3DtdtQKPM11iIzjhsfUyumr1iaviA9Gvd970PiMdHcPvtz0cs1ikdn5h3lPygTwghhCg2V10F3HILAHwK3ncUuRohDg693hVCCCGyMDQEfPazwItfDAD/VuxyhDhoNOgTQgghsvClLwE9PcB3vlPsSoSYHSX/ejcXDUouy+6PME1JLhqU2Wr4WNOWZC1SyL4HMj+zZHACwdF/mLYqsH80PaAtCtFuhfoChvkQ8vZ79h1wXWE+cwEdVwicIxyYHuIlF9Cpsa6MdWQhOcUM68YCXm8h5yKbB+J+6yUyz30gC5f6Cfdz7scB3zr2SCQCvn8MZwGHaPh4eqhGkO8hs9Dc7W/+MJ1doO9nHM+w8xamDwzbVs77kmOWb6HYtg341reA2trrsWnTm6XjE/Oakh/0CSGEEMXiy19Of/cpHv8ovOc/b4WYX+j1rhBCCLEfOjqAa65J5+sCe4pcjRCzR4M+IYQQYj9cfDEQiQAXXljsSoTID/P69e5sNR6zzdHM5hsV5tMXNn+unlhMmB4nTL/IuZoBfU2I1inM84sJ8+WbzUuVgHYoQ++3X0JyiAP7EnLuwnRe7CUX1lfY0zBXvWMofOynsgfJB7bPfSNzXXRscr2Gw7SpuXhp7m/5CHvT8fZCvOJy1ezl2zs07Hhk9s1cs2xzPVez3fdc14/s3TRn+vqAK64Yh/fXYPXqD0jLJxYEetInhBBCEFdfDXhfjQcfPB/ee3R0dBS7JCFmjQZ9QgghRAapFHDZZQDw33jBC4pdjRD5Q4M+IYQQIoM77gC2bgVkxCwWGvNa0xdGrpqSfPpA5aqXYWar9QkjzBMrbHsB7VCI7i3Uyy1s+yHLB+bPqCdX7aYL8ekL002xD15A58XHJkTnxvMHPBhD1h/IDqb5uS8EPCIp7zWQ4xyigcw2jbNjA/0sJAOaCfj8hWlX+R4RohlkZqsLnq1P32zuE/nWC87l/XR/zOX6zzzzGgDnYM2a++ZsG0IUAz3pE0IIIaZJJICRkTPwpjfVoqvr0WKXI0Re0aBPCCGEmOYPfwCApTj33CIXIsQcoEGfEEIIMc1vfwsA4zjjjGJXIkT+WdCavmJlNQKzz5Gc7fxzTajeh/NiQ+bP9XixVitbxmgA9qELObZhnonRRTbLN6CBo1py9WBkH7+wvNew/NpQPScdn1l7OmbRV/KxyNm3L8d+E+rjx3rIEL0j1z9bLe9slw8jc/9z1ejNZlvPZX2lkrX73e8+gerqvaitPaUo2xdiLlnQgz4hhBDiubJjBzA1dQS+8pUjil2KEHOCXu8KIYQQAG65Jf3v6acXtw4h5goN+oQQQggAd94JAH3YuLHYlQgxN5T8691sGpR8rnsu1p9t3bl6XOWq2ctZGxUyf8CbjQhotUK0SIFs3hz3L3T9mbq0EN+9wLpD8lMD87PGLsT7jQl414VpBFn3lWO9YdsP+PTR/oUtH6a/zDZvGLP1rwzTzOWSXbu/6bPVreX7HpSLRrCQHoH5mH8uuPrqx1BdvRfOvazYpQgxJ5T8oE8IIYSYa0ZGgKmpw/G5z20odilCzBl6vSuEEKLsue8+AIjiRS8qdiVCzB0a9AkhhCh7Nm9O/3vMMcWtQ4i5pKxf7861RjDbtgqtd8k1g5TJdf65JhffP/7LJtdzkasOi/Nkc/XlY41gvr3bAtm9pDnMVbeWa25zLusOI+dtk76TPQZzPVf5vofkOw83nz5/peKjN1c8+igADGD58kVhswoxb9GTPiGEEGVPetD3KJwrdiVCzB0a9AkhhCh7nhn0CbGQ0aBPCCFEWZNMAnv3AsBjxS5FiDml5DV9c6kHyje5bL/gWqYCE+bDN1utUS7ap1x1UrP1UJytl9tsPRsD6yfNXpgvX66+f7nUN1tta66ZzEzOucc57ntYJnSu5HrdzGWebr5zgEuJmUvk6WKWIcScoyd9QgghypqZ8WxXMcsQYs7RoE8IIURZo0GfKBc06BNCCFHWTE4CVVUA0FPsUoSYU0pe05eNYuvWZsNsa891+TCfvbn2DSzmuZpt7jGT95zgWWr+ctUkBuoL0bnlO5M127Jh2w7dlzzrzmZ7nRV6+2HMZZb5fKanZxCp1Ba0tbUVuxQh5hQ96RNCCFHWpFIRvOQlh6Gjo6PYpQgxp2jQJ4QQosyJobW12DUIMfdo0CeEEKLMiWHx4mLXIMTcM681fQuZUvPxK7QnYq7by2X+MG+1XHVZc63PnK0GcbbMNmc5m46s0JnSc523XWo6uUJ6h85vYrjhhsvw/e9fUOxChJhT9KRPCCFEmeMwNPRUsYsQYs7RoE8IIYTAvmIXIMSco0GfEEKIsmfJkuwRfkIsBKTpKxHyrafJtx5nLjM9n8v2ciUXP7IwDV+u2bT51kvm+9jn2xcwl+Vnq59kcs2izTelpm2dDeWl4Qvy059eUewShJhz9KRPCCFE2VNXV+wKhJh7NOgTQghR9tTXF7sCIeYeDfqEEEKUPRr0iXJAmr4MiulTVeq+eUyp6X+y1ZPrsQrozuY4m7bQOcaFXj5z//OdTTvfmK2ecj5T7HtWGHq9K8oBPekTQghR9uhJnygHNOgTQghR9tTUFLsCIeYeDfqEEEKUOSk4V+wahJh7pOnLoNQ0JtnIp49dPtZXyuSatZvv/NZ85gYfDMVefyn3rUJfB6V8LOaa0t53X+wChCgIetInhBCizNGgT5QHGvQJIYQoczToE+WBBn1CCCHKHA36RHkgTV+ZUtr6mtmTLXu30F5x+da85dvrba41i7Oh1DOexUJBgz5RHuhJnxBCiDJHgz5RHmjQJ4QQoszRoE+UBxr0CSGEKHM06BPlgTR9Yl4Qpu3Kp/Yr3zqyUtehlbKurZRrE8WFr1MkZrM2DfpEeaAnfUIIIcocDfpEeaBBnxBCiDJHgz5RHmjQJ4QQoszRoE+UB9L0iYOi1DJL87n9YuvIyikXea7RsVy45PdcatAnygM96RNCCCGEKAM06BNCCCGEKAM06BNCCCGEKAMKPuhzzn3SOeedc4sLvW2RP3wyaX5E/tCxzR86lkIIMUNBB33OuTUATgfQVcjtCiGEEEKUO4V+0vdNABdCX5USQgghhCgoBRv0OefOArDTe/9QyHznO+fudc7dO4WJAlUnhBCinMj8XaPnEKJcyKtPn3PuFgDL9zPpIgCfQ/rVbla891cAuAIAGl3LvLoSMz3BpB8SQojSJfN3jXPr59XvGiEOlrwO+rz3p+3vc+fcRgCHAHjIOQcAqwHc75w7wXu/J581CCGEEEKIIAVJ5PDePwxg6TNt51wHgE3e+32F2L4QQgghRLkjnz4hhBBCiDKgKNm73vv2Ymx3rpGOb2GgvFYhhBALET3pE0IIIYQoAzToE0IIIYQoAzToE0IIUebIsUWUB0XR9AlRykjDJ4QQYiGiJ31CCCGEEGWABn1CCCGEEGWABn1CCCGEEGWANH1CiKzIt1AIIRYGetInhBBCCFEGaNAnhBBCCFEGaNAnhBCizJFPnygPNOgTQgghhCgDNOgTQgghhCgDNOgTQgghhCgDZNkihMhKKVu0yE5GCCGeO3rSJ4QQQghRBmjQJ4QQQghRBmjQJ4QQQghRBkjTJ4SYt0jDJ/KDfPpEeaAnfUIIIYQQZYAGfUIIIYQQZYAGfUIIIYQQZYAGfUIIIYQQZYAGfUIIIYQQZYAGfUIIIYQQZYAGfUIIIcocWbaI8kCDPiGEEEKIMkCDPiGEEEKIMkCDPiGEEEKIMkCDPiGEEEKIMkCDPiGEEEKIMkCDPiGEEEKIMkCDPiGEEEKIMkCDPiGEEGWOfPpEeeC8L93O7pzrAdBZ7DqysBjAvmIXMU/RsTt4dOxmh47fwVPKx67Ne7/kYBZ0zg0DeCLP9cwFpXz8n2E+1Ags7DoPeC2U9KCv1HHO3eu931TsOuYjOnYHj47d7NDxO3gW6rGbL/s1H+qcDzUC5VunXu8KIYQQQpQBGvQJIYQQQpQBGvTNjiuKXcA8Rsfu4NGxmx06fgfPQj1282W/5kOd86FGoEzrlKZPCCGEEKIM0JM+IYQQQogyQIM+IYQQQogyQIO+POGc+6RzzjvnFhe7lvmCc+5rzrnHnXN/c879yjm3qNg1lTrOuTOcc08457Y65z5T7HrmC865Nc65251zjzrnHnHOfbTYNc03nHNR59wDzrn/LHYt+aLY15Nz7ofOub3Ouc0Zn7U45252zm2Z/rd5+nPnnPvOdK1/c84dl7HMO6fn3+Kce2eea9zvtVOCdVY75+5xzj00XecXpj8/xDl393Q9P3POVU5/XjXd3jo9vT1jXZ+d/vwJ59zf57POjG2Y66lgdXrv9TPLHwBrAPweaSPpxcWuZ778ADgdQGz6//8K4F+LXVMp/wCIAngKwKEAKgE8BOCoYtc1H34ArABw3PT/GwA8qWOX8zH8BICfAvjPYteSp/0p+vUE4KUAjgOwOeOzrwL4zPT/P/PMfRHAmQB+C8ABOBHA3dOftwDYNv1v8/T/m/NY436vnRKs0wGon/5/BYC7p7d/PYBzpz+/HMAF0///IIDLp/9/LoCfTf//qOm+UAXgkOk+Ep2Dc2+up0LVqSd9+eGbAC6Esnxywnt/k/c+Md28C8DqYtYzDzgBwFbv/Tbv/SSA6wCcVeSa5gXe+93e+/un/z8M4DEAq4pb1fzBObcawKsBfL/YteSRol9P3vs/Aeijj88C8KPp//8IwOszPr/Gp7kLwCLn3AoAfw/gZu99n/e+H8DNAM7IY40HunZKrU7vvR+ZblZM/3gAfwfg5weo85n6fw7gFc45N/35dd77Ce/90wC2It1X8gZfT9PbLUidGvTNEufcWQB2eu8fKnYt85z3IP3XoTgwqwBsz2jvgAYuOTP9euRYpJ8EiOfGt5D+wzZV7ELySKleT8u897un/78HwLLp/x+o3oLtB107JVfn9CvTBwHsRXpQ+RSAgYyHC5nbfLae6emDAFoLUSeC11NroeqMzbbycsA5dwuA5fuZdBGAzyH9mlLsh2zHznv/H9PzXAQgAeAnhaxNlB/OuXoAvwDwMe/9ULHrmQ84514DYK/3/j7n3KnFrqec8N5751xJvEHiayf9sClNqdTpvU8COGZaH/4rAEcWuaQAxb6eNOh7DnjvT9vf5865jUi/S39o+gJYDeB+59wJ3vs9BSyxZDnQsXsG59y7ALwGwCv8tFBBHJCdSOtHn2H19GfiOeCcq0D6l9ZPvPe/LHY984iTAbzOOXcmgGoAjc65H3vv31bkumZLqV5P3c65Fd773dOvRfdOf36gencCOJU+/0M+CzrAtVNydT6D937AOXc7gJOQfr0cm35KlnmOn6lzh3MuBqAJQG+W+vNF4HoC8O1C1anXu7PAe/+w936p977de9+O9OPV4zTge244585A+hH367z3o8WuZx7wVwCHTX/LqxJpUe+vi1zTvGBaA/MDAI95779R7HrmE977z3rvV0/f484FcNsCGPABpXs9/RrAM99sfSeA/8j4/B3T3449EcDg9OvV3wM43TnXPP0N2tOnP8sLWa6dUqtzyfQTPjjnagC8Emn94e0AzjlAnc/Ufw7S/dpPf37u9LdmDwFwGIB78lXnAa6n8wpWZ76/kVLOPwA6oG/v5nK8tiKtSXhw+ufyYtdU6j9IfzPuSaS1KhcVu5758gPgJUiLuv+W0d/OLHZd8+0H6Sc1C+Lbu9P7U9TrCcC/A9gNYArphwbvRVqvdSuALQBuAdAyPa8DcOl0rQ8D2JSxnvdM30+3Anh3nmvc77VTgnUeDeCB6To3A/in6c8PnR4MbQVwA4Cq6c+rp9tbp6cfmrGui6brfwLAq+bw/D97PRWqTsWwCSGEEEKUAXq9K4QQQghRBmjQJ4QQQghRBmjQJ4QQQghRBmjQJ4QQQghRBmjQJ4QQQghRBmjQJ4QQQghRBmjQJ4QQQghRBvx/ViLybKl7nksAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# Transform data to binned, and do a fit to it\n", "binned_data = data.make_binned(bins=(100, 100))\n", "\n", "xedges, yedges = binned_data['x'].as_ndarray(), binned_data['y'].as_ndarray()\n", "\n", "values = binned_data.values.as_ndarray()\n", "\n", "with minkit.minimizer('bml', pdf, binned_data) as minimizer:\n", " minimizer.migrad()\n", "\n", "# Plot the results\n", "fig, ax0, ax1, ax2 = create_figure()\n", "\n", "data_values, (xedges, yedges) = minkit.data_plotting_arrays(binned_data)\n", "\n", "cx = 0.5 * (xedges[1:] + xedges[:-1])\n", "cy = 0.5 * (yedges[1:] + yedges[:-1])\n", "\n", "vx, vy = tuple(a.flatten() for a in np.meshgrid(cx, cy))\n", "\n", "ax0.hist2d(vx, vy, bins=(xedges, yedges), weights=data_values);\n", "\n", "# Calculate the projections of the data and plot them\n", "xproj, _ = minkit.data_plotting_arrays(binned_data, projection='x')\n", "yproj, _ = minkit.data_plotting_arrays(binned_data, projection='y')\n", "\n", "cx = 0.5 * (xedges[1:] + xedges[:-1])\n", "cy = 0.5 * (yedges[1:] + yedges[:-1])\n", "\n", "ax1.hist(cx, bins=xedges, weights=xproj, histtype='step', color='k');\n", "ax2.hist(cy, bins=yedges, weights=yproj, histtype='step', orientation='horizontal', color='k');\n", "\n", "# Calculate the values of the PDF and plot them\n", "gxc, xpdf = minkit.pdf_plotting_arrays(pdf, values, (xedges, yedges), projection='x')\n", "gyc, ypdf = minkit.pdf_plotting_arrays(pdf, values, (xedges, yedges), projection='y')\n", "\n", "ax1.plot(gxc, xpdf, color='b');\n", "ax2.plot(ypdf, gyc, color='b');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As it can be clearly seen, the result is similar to that of the unbinned case." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" } }, "nbformat": 4, "nbformat_minor": 2 }