SciPyMinimizer¶
-
class
minkit.
SciPyMinimizer
(evaluator, **minimizer_config)[source]¶ Bases:
minkit.Minimizer
Interface with the
scipy.optimize.minimize()
function.- Parameters
evaluator (UnbinnedEvaluator, BinnedEvaluator or SimultaneousEvaluator) – evaluator to be used in the minimization.
Attributes Summary
Evaluator of the minimizer.
Methods Summary
asymmetric_errors
(name[, cov, sigma, atol, …])Calculate the asymmetric errors for the given parameter.
fcn_profile
(wa, values)Evaluate the profile of an FCN for a set of parameters and values.
minimization_profile
(wa, values[, …])Minimize a PDF an calculate the FCN for each set of parameters and values.
minimize
(*args, **kwargs)Minimize the FCN for the stored PDF and data sample.
Method to ensure that modifications of parameters within a minimizer context are reset properly.
scipy_minimize
([method, tol, hessian_opts])Minimize the PDF using the provided method and tolerance.
set_parameter_state
(name[, value, error, fixed])Method to ensure that a modification of a parameter within a minimizer context is treated properly.
Attributes Documentation
-
evaluator
¶ Evaluator of the minimizer.
Methods Documentation
-
asymmetric_errors
(name, cov=None, sigma=1, atol=1e-08, rtol=1e-05, maxcall=None)¶ Calculate the asymmetric errors for the given parameter. This is done by subdividing the bounds of the parameter into two till the variation of the FCN is one. Unlike MINOS, this method does not treat new minima.
- Parameters
name (str) – name of the parameter.
cov (numpy.ndarray) – covariance matrix. If provided, the initial values of the parameters will be obtained from them.
sigma (float) – number of standard deviations to compute.
atol (float) – absolute tolerance for the error.
rtol (float) – relative tolerance for the error.
maxcall (int or None) – maximum number of calls to calculate each error bound.
-
fcn_profile
(wa, values)¶ Evaluate the profile of an FCN for a set of parameters and values.
- Parameters
wa (str or list(str)) – single variable or set of variables.
values (numpy.ndarray) – values for each parameter specified in wa.
- Returns
Profile of the FCN for the given values.
- Return type
-
minimization_profile
(wa, values, minimizer_config=None)¶ Minimize a PDF an calculate the FCN for each set of parameters and values.
- Parameters
wa (str or list(str)) – single variable or set of variables.
values (numpy.ndarray) – values for each parameter specified in wa.
minimizer_config (dict or None) – arguments passed to
Minimizer.minimize()
.
- Returns
Profile of the FCN for the given values.
- Return type
-
minimize
(*args, **kwargs)[source]¶ Minimize the FCN for the stored PDF and data sample. It returns a tuple with the information whether the minimization succeded and the covariance matrix.
See also
scipy_minimize
-
restoring_state
()¶ Method to ensure that modifications of parameters within a minimizer context are reset properly. Sadly, the
iminuit.Minuit
class is not stateless, so each time a parameter is modified it must be notified of the change.Warning
For the
MinuitMinimizer
class, a call to this method does not preserve the minimization state of MIGRAD.
-
scipy_minimize
(method='L-BFGS-B', tol=None, hessian_opts=None)[source]¶ Minimize the PDF using the provided method and tolerance. Only the methods (‘L-BFGS-B’, ‘TNC’, ‘SLSQP’, ‘trust-constr’) are allowed.
- Parameters
method (str) – method parsed by
scipy.optimize.minimize()
.tol (float) – tolerance to be used in the minimization.
hessian_opts (dict) – options to be passed to
numdifftools.core.Hessian()
.
- Returns
result of the minimization and covariance matrix.
- Return type
-
set_parameter_state
(name, value=None, error=None, fixed=None)¶ Method to ensure that a modification of a parameter within a minimizer context is treated properly. Sadly, the
iminuit.Minuit
class is not stateless, so each time a parameter is modified it must be notified of the change.